博碩士論文 983209012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.224.0.25
姓名 鄭宜庭(Yi-Ting Cheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
(The Effect of Pd and Co Additives on the Enhancement of the Dehydrogenation Characteristics for LiBH4 and LiBH4+2LiNH2 systems)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 硼氫化鋰(LiBH4)由於具有相當高的理論氫氣儲存量(18.4 wt%),而成為一具有潛力的儲氫材料。然而,其起始及主要的脫氫都落在比較高的溫度,因此目前許多的研究皆致力於使用動力學或者熱力學的改質促進其脫氫特性。在本研究中,LiBH4的脫氫特性將藉由添加不同的鈀(Pd)、鈷(Co)化合物,或是將其與氨基化鋰(LiNH2)以球磨混合的方式製成Li-B-N-H的四元複合物加以改質,並以程式溫控還原系統(TPR)及程式溫控脫氫質譜儀(TPD-MS)加以分析樣品的脫氫性質、以X光粉末繞射儀(XRD)來鑑定樣品脫氫反應後的相變化。
由實驗結果可發現,LiBH4樣品的脫氫特性可以透過添加33 wt% Pd-Co/C而改善,其中以添加Pd25Co75/C的樣品能最有效的將脫氫溫度下降至523 K且脫氫量可達10.5 wt%而有較佳的改質結果。此外,從實驗結果亦發現當添加物中的Co含量增加時,樣品的起始脫氫溫度將逐漸下降,而其脫氫含量則有漸漸增加的趨勢。若進而改變Pd-Co/C添加物在樣品中的含量達50 wt%時,則以Pd50改質的系統有較Pd75或Pd25優異的脫氫特性,其起始及主要的脫氫溫度可有效降低至533及639 K,且擁有10 wt%的脫氫量。另外,對於添加33 wt%的Pd-Co/C加以改質的LiBH4+2LiNH2雙元系統,則由於Pd50改質後的樣品其起始脫氫溫度最能夠大幅的從523 K下降至396 K且脫氫量可達9.5 wt%,而具有最佳的脫氫特性。
另一方面,添加Pd及Co金屬氯化物與氫氧化物於LiBH4及雙元系統中,亦可有效的改善其原本脫氫特性。然而,此二種添加物對於系統的改質機制卻不相同。金屬氯化物的添加,會使系統產生一些離子交換反應,進而在反應過程中產生不穩定的金屬硼氫化物,使得脫氫溫度因此而大幅下降;而在添加金屬氫氧化物的系統中,則因為部分的水解以及氧化還原反應而能有效的改善整體的脫氫特性。另一方面,對於雙元系統而言,雖然添加Pd及Co金屬氯化物與氫氧化物同樣能有效的下降氫氣脫附的溫度,但添加金屬氫氧化物系統的脫氫量卻也大幅的降低。因此,在雙元系統中添加金屬氯化物能較添加金屬氫氧化物擁有更好的脫氫特性。
摘要(英) LiBH4 is a potential hydrogen storage material and gains lots of interests recently due to the extremely high hydrogen capacity (18.4 wt%). However, the initial decomposition temperature (Ti) and main dehydrogenation temperature (Tm) of LiBH4 are as high as 567 and 754 K, respectively. In order to overcome the drawbacks, there are several approaches developed to modify the system thermodynamically or kinetically. In this study, LiBH4 is modified by various additives or mixing with LiNH2 to form a new Li-B-N-H quaternary hydride by ball-milling process. Besides, their dehydrogenation properties are analyzed through temperature programmed reduction (TPR) and temperature programmed dehydrogenation-mass spectrometers (TPD-MS), and the phase structures of the systems are characterized by the X-ray powder diffraction (XRD) method.
Based on the results, it can be observed that the dehydrogenation properties of the LiBH4 can be successfully improved by doping 33 wt% of Pd-Co/C additives, and among the three different samples, Pd25Co75/C doped sample shows the optimal enhancement in promoting the dehydrogenation properties of LiBH4¬ by reducing the Ti to 523 K with the capacity as 10.5 wt%. Besides, it is found out that when the Co content in the additives increases, the Tis gradually decrease and capacities gently increase. Moreover, for the system modified by various amounts of Pd-Co/C, the results reveal that when the system is modified by 50 wt% of Pd-Co/C, Pd50Co50/C doped sample has better performance than Pd75Co25/C and Pd25Co75/C doped samples, which Ti and Tm can decrease to 533 and 639 K with 10 wt% of hydrogen desorbed. On the other hand, for 33 wt% of Pd-Co/C modified LiBH4+2LiNH2 binary system, the sample doped with Pd50Co50/C shows the effective modification, and the Ti is dramatically reduced from 523 K of the pristine binary system to 396 K and the capacity is 9.5 wt%.
In terms of various metal (Pd and Co) chlorides and hydroxides modified LiBH4 and binary systems, the improvement of the dehydrogenation properties can both be observed. However, the reasons of the enhancements by metal chlorides and hydroxides may be different. For LiBH4 systems, the metal chlorides modified samples may have some ion exchange reactions and then form the unstable transition metal borohydrides during the heating process, thus the dehydrogenation properties can be enhanced. However, for metal hydroxides doped samples, the enhancement may be ascribed as the combinational effects of hydrolysis and redox reactions during the decomposition processes. On the other hand, for the metal (Pd and Co) chlorides and hydroxides modified binary systems, although the Tis and Tms can both significantly decrease to lower temperature ranges, the capacities of the samples modified by metal hydroxides also conspicuously reduce. Therefore, metal chlorides modified binary samples shows the better performance in improving the dehydrogenation properties than metal hydroxides.
關鍵字(中) ★ 程式溫控脫氫質譜儀
★ 主要脫氫溫度
★ 碳支撐鈀鈷
★ 鈀鈷金屬氯化物
★ 鈀鈷金屬氫氧化物
★ 硼氫化鋰
★ 脫氫特性
★ 起始脫氫溫度
關鍵字(英) ★ LiBH4
★ dehydrogenation properties
★ meta
★ Pd-Co/C
論文目次 摘要 I
Abstract III
誌謝 V
Table of Contents VII
List of Figures XI
List of Tables XV
Chapter Ι Introduction 1
1. Hydrogen energy 2
2. Hydrogen storage 3
2.1 Traditional metal hydrides 7
2.2 Intermetallic compounds 11
2.3 Complex hydrides 13
3. The modification of LiBH4 system 16
3.1 LiBH4 system 16
3.2 The modification of LiBH4 system by various additives 16
3.2.1 The effect of metal chlorides (MgCl2/TiCl3) 16
3.2.2 The effect of single-walled carbon nanotubes (SWNTs) 19
3.2.3 The effect of carbon supported palladium (Pd/C) 19
3.3 The LiBH4+2LiNH2 binary system 21
4. Motivation of this study 26
Chapter II Experimental procedure 27
1. Preparation of materials 27
1.1 LiBH4 and LiNH2 27
1.2 CoCl2 and PdCl2 27
1.3 Preparation of PdxCo100-x/C alloy 27
1.4 Preparation of Pd(OH)2 28
1.5 Preparation of Co(OH)x 28
1.6 Ball-milling of materials 28
2. Characterization of modified materials 33
2.1 X-ray powder diffraction (XRD) 33
2.2 Temperature programmed reduction (TPR) 33
2.3 Temperature programmed dehydrogenation - Mass spectrometer (TPD-MS) 36
Chapter III Results and Discussion 37
1. The effect of Pd-Co/C, Pd/C, Co/C, and carbon (XC-72R) on the dehydrogenation properties of LiBH4 38
1.1 The XRD characterization of various additives 38
1.2 The dehydrogenation of as-received and modified LiBH4 in the linear heating process 38
1.2.1 The TPR analysis of the dehydrogenation characteristics 38
1.2.2 The comparison of the dehydrogenation characteristics 43
1.2.3 The TPD-MS analysis of the dehydrogenation characteristics 46
1.2.4 The mechanisms of the enhanced dehydrogenation processes 48
1.3 The dehydrogenation of as-received and modified LiBH4 heated from room temperature to 600 K and held for 1 h 50
2. The effect of Pd-Co/C additives ratios on the dehydrogenation properties of LiBH4 54
2.1 The TPR analysis of the dehydrogenation characteristics 54
2.2 The comparison of the dehydrogenation characteristics 57
3. The effect of Pd-Co/C additives on the dehydrogenation properties of LiBH4+2LiNH2 binary system 62
3.1 The TPR analysis of the dehydrogenation characteristics 62
3.2 The comparison of the dehydrogenation characteristics 65
4. The effect of metal (Pd and Co) chlorides and hydroxides on the dehydrogenation properties of LiBH4 68
4.1 The metal chlorides modified LiBH4 systems 68
4.1.1 The TPR analysis of the dehydrogenation characteristics 69
4.1.2 The TPD-MS analysis of the dehydrogenation characteristics 71
4.2 The metal hydroxides modified LiBH4 systems 71
4.2.1 The XRD characterization of prepared metal hydroxides 71
4.2.2 The TPR analysis of metal hydroxides 75
4.2.3 The TPR analysis of the metal hydroxides modified LiBH4 77
4.2.4 The TPD-MS analysis of the dehydrogenation characteristics 80
4.3 The comparison of the dehydrogenation characteristics 80
5. The effect of metal (Pd and Co) chlorides and hydroxides on the dehydrogenation properties of LiBH4+2LiNH2 binary system 84
5.1 The TPR analysis of the dehydrogenation characteristics 84
5.2 The TPD-MS analysis of the dehydrogenation characteristics 87
5.3 The comparison of the dehydrogenation characteristics 89
Chapter IV Conclusions 92
References 95
參考文獻 [1] CIA World Factbook, World Population July 2011 est. Available at: https://www.cia.gov/library/publications/the-world-factbook/geos/xx. html#People
[2] A. Züttel, Mater. Today (2003) 24.
[3] R. V. Helmolt and U. Eberle, J. Power Sources 165 (2007) 833.
[4] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, and Ch. Emmenegger, J. Power Sources 118 (2003) 1.
[5] A. Züttel, Naturwissenschaften 91 (2004) 157.
[6] L. Schlapbach and A. Züttel, Nature 414 (2001) 353.
[7] E. David and J. Mater. Process. Technol. 162 (2005) 169.
[8] I. Uehara, T. Sakai, and H. Ishikawa, J. Alloys Compd. 253 (1997) 635.
[9] J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, Chem. Soc. Rev. 39 (2010) 656.
[10] P. Chen and M. Zhu, Mater. Today 11 (2008) 36.
[11] W. Luo, J. Alloys Compd. 381 (2004) 284.
[12] J. Huota, J. F. Pelletier, L. B. Lurioc, M. Sutton, and R. Schulz, J. Alloys Compd. 348 (2003) 319.
[13] Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys Compd. 347 (2002) 319.
[14] A. Chaise, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, R. Olive`s, and S. Garrier, Int. J. Hydrogen Energy 34 (2009) 8589.
[15] C. X. Shang and Z. X. Guo, J. Power Sources 129 (2004) 73.
[16] R. Zidan, B. L. Garcia-Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray and A. G. Harter, Chem. Commun. (2009) 3717.
[17] C. Wolverton, V. Ozolins, and M. Asta, Phys. Rev. B 74 (2006) 214114.
[18] J. Graetz, Chem. Soc. Rev. 38 (2009) 73.
[19] L. Ismer, A. Janotti, and C. G. Van de Walle, J. Alloys Compd. doi:10.1016/ j.jallcom.2010.10.014.
[20] J. Graetz, S. Chaudhuri, Y. Lee, T. Vogt, J. T. Muckerman, and J. J. Reilly, Phys. Rev. B 74(2006) 214114.
[21] A. Zaluska, L. Zaluski, and J. O. Stroem-Olsen, Appl. Phys. A 72 (2001) 157.
[22] K. Yvon, Chimia 52 (1998) 613.
[23] J. V. Vucht, F. A. Kuijpers, and H. Bruning, Philips Res. Rep. 25 (1970) 133.
[24] J. J. Reilly and R. H. Wiswall, Inorg. Chem. 13 (1974) 218.
[25] M. H. Mendelsohn, D. M. Gruen, and A. E. Dwight, Nature 269 (1977) 45.
[26] L. Zaluski, A. Zaluska, P. Tessier, J. O. Strrm-Olsen, and R. Schulz, J. Alloys Compd. 217 (1995) 295.
[27] U.S. Department of Energy, Office of Basic Energy Science: Basic Research Needs for the H2 Economy, Report of BES Workshop on H2 Production, Storage and Use, Argonne National Laboratory, May 13-15, 2003.
[28] T. Umegaki, J. M. Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, and Q. Xu, Int. J. Hydrogen Energy 34 (2009) 2303.
[29] A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron, and Ch. Emmenegger, J. Alloys Compd. 356 (2003) 515.
[30] B. Bogdanovic and M. Schwickardi, J. Alloys Compd. 253 (1997) 1.
[31] P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Nature 420 (2002) 303.
[32] M. Au, W. Spencer, A. Jurgensen, and C. Zeigler, J. Alloys Compd. 462 (2008) 303.
[33] Z. Z. Fang, X. D. Kang, H. B. Dai, M. J. Zhang, P. Wang, and H. M. Cheng, Scripta Mater. 58 (2008) 922.
[34] J. Xu, X. Yu, J. Ni, Z. Zou, Z. Lia, and H. Yang, Dalton Trans. (2009)8386.
[35] F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh, and M. D. Kundrat, J. Phys. Chem. B 109 (2005) 6.
[36] K. W. Wang, S. R. Chung, W. H. Hung, and T. P. Perng, Appl. Surf. Sci. 252 (2006) 8751.
[37] W. Wang, D. Zheng, C. Du, Z. Zou, X. Zhang, B. Xia, H. Yang, and D. L. Akins, J. Power Sources 167 (2007) 243.
[38] Z. Z. Fang, X. D. Kang, and P. Wang, Int. J. Hydrogen Energy (2010)1.
[39] B. J. Zhang and B. H. Liu, Int. J. Hydrogen Energy 35 (2010) 7288.
[40] A. F. Gross, J. J. Vajo, S. L. V. Atta, and G. L. Olson, J. Phys. Chem. C 112 (2008) 5651.
[41] G. L. Xia, Y. H. Guoa, Z. Wub, and X. B. Yu, J. Alloys Compd. 479 (2009) 545.
[42] S. Cahen, J. B. Eymery, R. Janot, and J. M. Tarascon, J. Power Sources 189 (2009) 902.
[43] Y. Zhang, W. S. Zhang, A. Q. Wang, L. X. Sun, M. Q. Fan, H. L. Chu, J. C. Sun, and T. Zhang, Int. J. Hydrogen Energy 32 (2007) 3976.
[44] M. Aoki1, K. Miwa1, T. Noritake1, G. Kitahara, Y. Nakamori, S. Orimo, and S. Towata1, Appl. Phys. A 80 (2005) 1409.
[45] F. E. Pinkerton, M. S. Meyer, G. P. Meisner, and M. P. Balogh, J. Alloys Compd. 433 (2007) 282.
[46] W. S. Tang, G. Wu, T. Liu, A. T. S. Wee, C. K. Yong, Z. Xiong, A. T. S. Hora, and P. Chen, Dalton Trans. (2008) 2395.
[47]Y. Liu, K. Luo, Y. Zhou, M. Gao, and H. Pan, J. Alloys Compd. 481 (2009) 473.
[48] Z. Z. Fang, X. D. Kang, Z. X. Yang, G. S. Walker, and P. Wang, J. Phys. Chem. C 115 (2011) 11839.
[49] B. J. Zhang, B. H. Liu, and Z. P. Li, J. Alloys Compd. 509 (2011) 751.
[50] P. Choudhury, S. S. Srinivasan, V. R. Bhethanabotla, Y. Goswami, K. McGrath, and E. K. Stefanakos, Int. J. Hydrogen Energy 34 (2009) 6325.
[51] Y. Nakamori, K. Miwa, A. Ninomiya, H. W. Li, N. Ohba, and S. Towata, Phys. Rev. B 74 (2006) 045126.
[52] P. J. Feibelman and D. R. Hamann, Phys. Rev. B 28 (1983) 3902.
[53] Y. He, P. Sharma, K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tse, S. Yin, and J. Z. Jiang, Phys. Rev. B 78 (2008) 155202.
[54] M. Figlarz, J. Guenot, and J. N. Tournemolle, J. Mater. Sci. 9 (1974) 772.
[55] C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, and C. T. Yeh, J. Phys. Chem. B 105 (2001) 9113.
[56] R. J. Wu, J. G. Wu, T. K. Tsai, and C. T. Yeh, Sens. Actuators B 120 (2006) 104.
[57] Y. Kojimaa, Y. Kawai, M. Kimbara, H. Nakanishi, and S. Matsumoto, Int. J. Hydrogen Energy 29 (2004) 1213.
[58] X. B. Yu, D. M. Grant, and G. S. Walker, J. Phys. Chem. C 113 (2009) 17945.
[59] F. E. Pinkerton, M. S. Meyer, G. P. Meisner, and M. P. Balogh, J. Phys. Chem. B 110 (2006) 7967.
[60] J. Zhang and Y. H. Hu, Ind. Eng. Chem. Res. DOI: 10.1021/
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明