博碩士論文 983211004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.233.219.62
姓名 周鴻佑(Hong-you Jhou)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 足弓指標參數之比較分析
(Comparative analysis of foot arch index parameters)
相關論文
★ 運用腦電波研究中風病人的復健成效 與持續情形★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響
★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth★ 使用虛擬實境系統誘發事件相關電位P300之研究
★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究★ 使用GPU提升事件相關電位之動態因果模型的運算效能
★ 基於動態因果模型之老化相關的運動網路研究★ 應用腦電圖預測中風病人復健情況
★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響★ 基於虛擬實境復健之中風後運動網路功能性重組研究
★ 應用腦電圖與相關臨床因子預測中風病人復原之研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人體足部的結構對於站立及行走非常重要,不正常的足型會造成下肢容易疲勞甚至發生病變,導致行走時平衡的失調。例如兩種常見的足弓高度異常造成的疾病:扁平足與高弓足。因此評估足弓高度(Arch Height)在足部醫療檢測上是必要的。檢測足弓高度的方法有很多種,例:X 光檢測、足弓測量、足印指標參數與足壓指數(Modified Arch Index; MAI)等。在考慮設備價格與取得難易後,本研究選擇足弓測量、七種足印指標參數(包含:AA、ALI、FI、TFI、SI、CSI與AI)與足壓指數(MAI),三種檢測方式並配合影像處理與自動化測量系統進行檢測。本研究將對三十三名受試者進行實驗共六十六筆足印樣本(男性二十二人、女性十一人,平均身高169±6.7cm公分、體重64±12.3公斤、年齡23±3歲)做為正常控制組。本實驗先假設具有完整足印且無足部病歷的受試者為正常足,並另外招募十名扁平足(男性八人、女性二人共二十筆足印樣本)與十名高弓足的受試者(男性四人、女性六人,共二十筆足印樣本)作為對照組,分別進行足弓高度、足印指標參數與足壓指數(MAI)檢測實驗,最後將實驗結果與文獻資料進行比較,找出可信度最高的檢測方法。實驗結果顯示,正常足、扁平足與高弓足的平均足弓高度分別為4.03±0.82、2.45±0.14與5.47±0.26 cm。足壓指數(MAI)與足弓高度的相關度最高,其次是Arch Index(AI)足印指標參數; 正常足的足壓指數(MAI):中足占26%~30%,分佈較均勻;扁平足:中足占33%~37%,主要集中在中足區;高弓足:中足占18%~22%,主要集中在前足與足跟。在七種足印指標參數中足弓高度與Arch Index(AI)相關度最高,而與Arch Length Index(ALI)的相關度最低,而且二維面積比值參數(FI與TFI)的相關度高於一維長度比值參數(SI與CSI)。由於足壓指數(MAI)對於異常的足弓高度具有檢測的功能。因此,我們認為此法是在X光檢測足弓高度前,預測足弓高度的最佳檢測方式。
摘要(英) Human foot’’s structure is important regarding stands and walks. Abnormal foot state could make the lower limb easily weary and even lead to the pathological changes, resulting in unbalanced when walking. There are two common diseases: the flat foot and the high arch foot caused by abnormal arch height. Therefore, the arch height assessment of foot is essential in foot medical examination. There are many ways to detect arch height, including: x-ray examination, arch height measurement, footprint index parameters and foot pressure index (exp. Modified Arch Index; MAI) etc. In this study, we choose arch measurements, footprint index parameters (including AA, ALI, FI, TFI, SI, CSI and AI) and MAI with image processing and automated measurement system for detection as they are easy to access and the equipments are relatively cheap.
33 participants with a complete footprint and without any foot pathological history were assumed to be normal and recruited in this study to give a total of 66 samples of footprints (22 male, 11 female, average height in 169±6.7cm, weight in 64±12.3 kg, age in 23±3 years). This is the normal control group. In addition, 10 participants with flat foot (8 male, 2 female; a total of 20 samples of footprints) and 10 participants with high arch foot (4 men, 6 women, a total of 20 samples of footprints) were recruited as the contrast group. The arch height,
seven footprint index parameters and MAI were measured and compared between groups and with data from literatures for cross validation in order to identify the best detection method.
The empirical results of the foot arch height detection experiments show that the average foot arch heights are 4.03±0.82, 2.45±0.14 and 5.47±0.26 cm for normal, flat foot and high arch foot, respectively.
The parameters that can best represent the arch height (highest correlation) is
MAI. The situation of MAI of normal foot which is 26%~30% on the middle foot, the distribution is uniform. The flat foot which is 33%~37% on the middle foot, the main distribution is on the middle foot. The high arch foot which is 18%~22% on the middle foot, the main distribution is on the front foot and the heel.
Among seven footprint index parameters, the Arch Index (AI) is most correlated with arch height and Arch Length Index (ALI) is lowest. Furthermore, the two-dimensional area ratio parameters (FI and TFI) are more related with arch height than one-dimensional length ratio parameters (SI and CSI).
In conclusion, we have indentified the best examine method: MAI among methods tested for abnormal arch height detection. As the method is capable of detecting abnormal foot arch and can provide useful and reliable information, we believe that it could predict the arch height before clinical x-ray foot arch examination.
關鍵字(中) ★ 足壓
★ 足印指標參數
★ 足弓
★ 影像處理
★ 統計分析
關鍵字(英) ★ Foot arch
★ footprints index parameters
★ foot pressure
★ image processing
★ statistical analysis
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 XI
一、緒論 1
1-1研究概述 1
1-1-1研究動機 1
1-1-2研究方法與研究目的 2
1-2文獻回顧 3
1-2-1足部外型簡介 3
1-2-2足部骨骼簡介 3
1-2-3扁平足 7
1-2-4高弓足 9
1-2-5足印指標參數 11
1-2-6其他足型檢測方法 20
1-3常見的足型量測工具 22
二、材料與方法 26
2-1實驗方法與理論 26
2-2實驗設備介紹 27
2-2-1二維足型與足壓量測系統 27
2-2-2軟體系統 30
2-3影像處理 31
2-3-1影像二值化 31
2-3-2常見的二值化方法 32
2-3-3影像邊緣偵測 35
2-3-4梯度運算子 36
2-3-5常見的邊緣偵測方法 37
三、實驗流程與內容 41
3-1灰階值與壓力值的相關曲線建立實驗 41
3-2影像處理實驗 43
3-3足部檢測實驗 48
3-3-1足弓高度檢測實驗 49
3-3-2足印指標參指數檢測實驗 50
3-3-3足底壓力分佈實驗 53
四、實驗結果 56
4-1足弓高度檢測實驗結果 56
4-2足印指標參數檢測實驗結果 57
4-3足壓指數實驗結果 57
五、結果與討論 58
5-1足弓高度檢測實驗結果討論 58
5-2足印指標參數檢測實驗結果討論 59
5-3足底壓力分佈實驗結果討論 64
六、結論 70
七、未來展望 71
八、參考文獻 72
附錄一 74
附錄二 76
附錄三 78
參考文獻 [1]呂厚山,足關節科學,科學出版社,北京,1998。
[2] Martini, Bartholomew, Essentials of Anatomy & Physiology,林自勇、鄧志
娟、陳瑩玲等譯,解剖生理學,全威圖書,2003。
[3]龍溪文,[足部結構型態對部型時生物力學的影響],國立陽明大學醫學
工程研究所博士論文,2008。
[4]明德足部科技股份有限公司, http://www.enable.com.tw/。
[5]Schwartz L.,Britten RH., Thomopson LR. et.al” Studies in physical development and posture,”Washington,PublicHealthBulletin,U.S.Government Printing Office, pp.64-65,1928.
[6]. Rogers FR.,”Fundamental administrative measures in physical education,”
Newton MA, pp.35-39,1932.
[7] rwin LW.”A study of the tendency of school children to deveflat-footedness.
developflat-footedness,”pp.46-53, 1986.
[8] Cavanagh PR.,Rodgers MM. et.al”The arch index: a useful Measure From
Footprints,” Journal of Biomechanics. 20(5):pp.47-51, 1987.
[9] Chu WC., Lee SH., Chu W., Wang. TJ, Lee MC. et.al”The use of arch index to characterize arch height: a digital image processing approach,” IEEE 62 Transactions on Biomedical Engineering. 42(11):pp.88-93, 1995.
[10]Hawes MR.,Nachbauer W.,Sovak D.,Nigg BM. et.al”Footprint parameters
as a measure of arch height,” Foot & Ankle. 13(1):pp.22-26, 1992.
[11] Forriol F., Pascaul J. et.al” Footprint analysis betweenthree and seventeen
years of age,” Foot &Ankle 11:pp.101-104,1990.
[12] Staheli LT., Chew DW., Corbeet M. et.al”The long itudinal arch J Bone
Joint Surg,” pp.26-28,1987.
[13]Simkin A., Leichter I., Giladi M., Stein M.,Miigrom C. et.al” Combined effect of foot arch structure,”pp.25-29,1989.
[14]McCroy JL.,Young MJ., Boulton AJM.,Cavanagh PR.et.al ”Arch index as a
predictor of arch height,” ASB annual meeting, 1995.
[15]Forriol F., Pascaul J.” Footprint analysis between three and seventeen years
of age,” Foot & Ankle 11:pp.101-104,1990.
[16]劉家忠,「足型與足壓電腦輔助分析系統開發」,中央大學,碩士論文,
2007。
[17]博司科技有限公司 http://www.vers.com.tw/product/p04_01_2.htm。
[18]簡怡棻,「二維及三維足型的應用與高跟鞋足型足壓的量測分析」,中
央大學,碩士論文,2008。
[19]梁世昌、陳文儉,「工程圖影像二值化之研究」,多媒體及通訊系統研
討會,2006。
[20]鄭文瑋,[在次像素精準度下的邊緣偵測演算法及其應用],資訊傳播工程學系碩士班 碩士學位論文,2005。
[21] Yu Y., Samal A. and Seth S. C. et.al, “A System for Recognizing a Large
Class of Engineering Drawings ,” IEEE Trans. Pattern Analysis and Machins Intelligence, vol. 19, no. 8, pp. 868-890,1997.
[22]鍾國亮,影像處理與電腦視覺,台北:東華書局,民國91年。
[23] Otsu N.and Kurita T., "Proposal of Complex Autoregressive Model as a
Shape Descriptor,” In proceeding of IEICE Japan Nat. Convention Rec, vol. D-496: pp. 68-89, 1989.
[24] Nagy G., “Twenty Years of Document Image Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1,pp.38-62,2000.
[25]吳成柯等,數位影像處理,台北:儒林圖書,民國84年。
[26]Marr D. and Hildreth E. "Theory of Edge Detection," Royal Soc.vol.B-207, pp. 187-217, 1980.
[27]Gonzalez R. C. and Wintz P.”Digital Image Processing,”Addision-Wesley
Publishing Company, 1987.
[28]林宸生,應用於LCD 上的定位研究。民國94 年。
[29]鄭中川,[使用灰階像素臨界值的自動化肺部切割],朝陽科技大學資訊
管理系碩士論文,2006。
[30]CannyJ. F.“A computational approach to edge detection,”IEEE Transactions on Pattern Analysis and Machine Intelligence, November 1986, Vol. 8 No. 6, pp. 679-698.
[31] Yuang Shiang Tz.”Evaluating different footprint parameters as a predictor of arch height,” pp. 71-78 ,1998.
[32]. Yung-Hui L., Wei-Hsien H. et.al“ Effects of shoe inserts and heel heighton footpressure, impact force, and perceived comfort during walking,”Applied Ergonomics,Vol.36 ,pp.355–362,2005.
指導教授 陳純娟(Chun-chuan-Chen) 審核日期 2011-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明