博碩士論文 983402007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:100.26.179.251
姓名 嚴國基(Kuo-Chi Yen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高速公路依時性道路收費雙層規劃模型
(A Time-Dependent Bi-Level Model for Road Pricing on Freeways)
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來私人運具快速成長且缺乏有效的道路費率定價政策,導致目前國道高速公路在尖峰時間道路容量與服務水準嚴重不足。因此衍生「國道差別費率」的需求管理措施,期望透過差別費率舒緩尖峰車流,然而,策略目標並不如預期顯著。主管機關應細緻的規劃推動國道定價策略,以系統化的角度進行思考如何確實反映尖峰時間使用國道所應付出的價格。費率定價的制定必須能夠達到「替代效果」,此替代效果包含時間替代、道路替代以及運輸工具的替代。鑒此本研究建立以依時性用路人路徑選擇最佳化模型為基礎的費率規劃方式導入時間向度、路徑選擇以及運具選擇等因素,藉由落實使用者付費,使得用路人因有效的道路定價產生道路替代、運具替代以及出發時間替代的效果。進而規劃出切實有效的最佳化費率作為公務部門政策推行的依據。
本研究將以四個階段進行討論,首先以B演算法應用求解依時性用路人路徑選擇最佳化模型以說明該演算法的特性與運算績效;第二階段,則是探討含流出率容量限制與先進先出限制之依時性用路人最佳化模型以說明依時性模型所遭遇的問題並提出解決方式,以更一般化的模型詮釋依時性用路人路徑選擇行為。由於收費政策的推行期望達成時間替代、道路替代以及運輸工具替代等效果,因此第三階段討論依時性用路人最佳化運具選擇/路徑選擇/出發時間選擇問題,並且加入第二階段的限制條件以構建含額外限制之依時性用路人最佳化運具選擇/路徑選擇/出發時間選擇模型。最後於第四階段討論道路收費定價問題,建構國道收費定價最佳化設計雙層規劃模型。由於本研究屬網路設計問題之範疇,因此建立雙層規劃模型,上層為系統最佳化,追求路網總成本最小為目標;下層問題則利用含額外限制之依時性用路人最佳化運具選擇/路徑選擇/出發時間選擇模型的特性,分析最佳化費率下依時性用路人旅運行為。藉此提供政府相關權責單位有效的決策支援。
摘要(英) Rapid growth in private vehicle ownership and the lack of an effective pricing policy for road tolls has led to congestion and inadequate service on freeways, especially during peak hours. Differential toll rates have been introduced in an attempt to stem traffic flows during peak hours; however, results have failed to meet expectations. To overcome this, the authorities should promote the road pricing strategy that accurately reflects the cost of using the freeway during peak hours is required. The pricing strategy must achieve the “alternative effect” which includes departure time replacement, path substitute and modes alternative. This study try to formulate the dynamic user-optimal route choice model integrates time dimension, route choice and mode choice factors. The users will be affecting by efficiency road pricing and changing the behavior. This model can be used as reference in establishing public policies that facilitate effective toll rates.
This research was conducted in four stages. We first demonstrated the features and performance of Algorithm B by applying it to solve the dynamic user-optimal route choice model. Second, we discussed the problems of exit-capacity and first-in-first-out constraints, and proposed countermeasures in order to explain the dynamic user behavior more exactly. Since the roed pricing policy must achieve the above three substitution efficacy. In the third stage the dynamic user-optimal mode choice/departure time/route choice model with side-constraints will be discussed. In Stage 4, the dynamic bi-level optimal toll design model for superhighway has been formulated. Our study is in the field of network design, which is formulated network design field as a Bi-level programming model. The upper level objective of the model is to minimize the total network costs. The objective of the lower level is to apply the dynamic user-optimal mode choice/departure time/route choice model with side-constraints to analyze the behavior of the travelers under optimal toll rates. By solving the problem, the variational inequality sensitivity analysis method, generalized inverse matrix method, and Lagrangian-B algorithm are adopted to provide the algorithms for the bi-level method. The results of this study serve as reference for policy-making authorities.
關鍵字(中) ★ 道路定價問題
★ 雙層規劃問題
★ 依時性用路人路徑選擇最佳化問題
關鍵字(英) ★ road pricing problem
★ bi-level planning problem
★ the dynamic user-optimal route choice model problem
論文目次 中文摘要 II
英文摘要 III
致謝 V
目錄 VI
表目錄 IX
圖目錄 XI
符號說明 XII
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 3
1-3 研究方法 5
1-4 研究範圍與假設 8
1-5 研究流程 11
1-6 研究貢獻 12
二、 文獻回顧 14
2-1 依時性路網均衡問題 14
2-2 依時性用路人最佳化路徑選擇模型 17
2-3 額外限制式問題 19
2-3-1 路段流出率容量限制 19
2-3-2 依時性車流先進先出原則 20
2-4 依時性用路人最佳化運具/出發時間選擇問題 22
2-5 快速精準演算法應用於依時性用路人最佳化路徑選擇問題 24
2-6 雙層規劃問題與路網敏感度分析 25
2-6-1 雙層規劃問題 25
2-6-2 路網敏感度分析 29
2-7 道路收費定價問題 33
2-8 綜合評析 39
三、 B演算法應用於求解依時性用路人最佳化模型 44
3-1 依時性用路人最佳化模型與求解演算法 45
3-1-1 巢化對角法 (Nested Diagonalization Method, NDM) 45
3-1-2 B演算法 47
3-2 數值範例測試與運算績效 50
3-3 小結 53
四、 含額外限制依時性用路人最佳化模型 55
4-1 路段流出率容量限制 55
4-2 時間變動下之車流先進先出限制 58
4-3 含先進先出與流出率容量限制之依時性旅運選擇均衡模型 60
4-3-1 均衡條件 60
4-3-2 模型建立 61
4-3-3 最佳化條件 63
4-3-4 對等性證明 66
4-4 求解演算法 69
4-4-1 拉氏法 70
4-4-2 求解演算法 72
4-5 數值範例測試 75
五、 含額外限制之依時性用路人最佳化運具選擇/路徑選擇/出發時間選擇模型 81
5-1 依時性用路人最佳化運具選擇/路徑選擇/出發時間選擇問題 81
5-2 模型建立與對等性證明 83
5-2-1 模型建立 83
5-2-2 對等性證明 86
5-3 求解演算法 88
5-4 數值例測試 92
六、 國道收費定價最佳化設計雙層規劃模型 97
6-1 模型建立 98
6-2 模型求解 100
6-2-1 變分不等式敏感度分析適用時機 101
6-2-2 變分不等式敏感度分析 105
6-2-3 變分不等式敏感度分析於網路均衡問題之應用 108
6-2-4 敏感度分析與廣義反矩陣 110
6-2-5 應用廣義反矩陣於網路均衡問題敏感度分析 113
6-2-6 廣義反矩陣與敏感度分析例證說明 116
6-3 國道收費定價設計最佳化模型求解演算法 126
6-4 台北至宜蘭路網與起迄需求資訊 129
6-5 數值測試與分析 132
6-5-1 國道基本收費政策分析 133
6-5-2 國道收費最佳化訂價分析 135
6-5-3 固定最佳化費率下路網流量狀態 140
6-5-4 政策定價費率求解下層模型 143
6-6 小結 148
七、 結論與建議 150
7-1 結論 150
7-2 建議 152
參考文獻 156
附錄1:3-2節測試路網1路段流量表 163
附錄2:國道五號日交通量參考值 168
附錄3:國道五號系統交流道至宜蘭交流道分時交通量 169
參考文獻 〔1〕 王中允,「路段容量限制動態用路人旅運選擇模型之研究」,國立中央大學,博士論文,1999年。
〔2〕 卓訓榮,「以廣義反矩陣方法探討均衡路網流量的敏感性分析」,運輸計劃季刊,20(1), 1-14頁,1991。
〔3〕 卓訓榮,「最短距離方法與廣義反矩陣敏感性分析方法之比較」,運輸計劃季刊,21(1), 23-34頁,1992。
〔4〕 卓訓榮,羅仕京,「以廣義反矩陣的特性推導路徑非負流量之研究」,運輸學刊,11(3), 39~48頁,1999。
〔5〕 林培煒,「變分不等式均衡路網流量敏感性分析路網資訊獨立性之研究」 ,國立交通大學,碩士論文,1998年。
〔6〕 周鄭義,「動態號誌時制最佳化之研究–雙層規劃模型之應用」,國立中央大學,碩士論文,1999年。
〔7〕 周榮昌、陳志成、柯如菁,「高速公路用路人對電子收費接受意願之研究-加入媒體傳播之影響」,中華民國運輸學會98年學術論文研討會,開南大學,桃園,論文集,2525-2561頁,2009年。
〔8〕 李宗益,「含額外限制式動態用路人均衡模型之研究」,國立中央大學,碩士論文,2000年。
〔9〕 黃士沛,「不同決策變數下動態用路人均衡路徑選擇模型之研究」,國立中央大學,碩士論文,2000年。
〔10〕 張美香,「動態旅運選擇模型之課題研究」,國立中央大學,博士論文,1998年。
〔11〕 張天然,「改進的交通分配起點用户均衡算法」,上海交通大學學報,45(4) ,510-516頁,2010。
〔12〕 陳穎俊,「動態用路人均衡雙邊限制模型之研究」,國立中央大學,碩士論文,1999年。
〔13〕 陳惠國、周鄭義,「動態號誌時制控制之研究」,運輸計劃季刊,30(4), 823 - 847頁,2001。
〔14〕 陳惠國、李宗益、張佳偉,「路段流出率與路段流入率容量限制之比較-以動態用路人均衡路徑選擇模型為例」,運輸計畫季刊, 31(3), 475-494頁,2002。
〔15〕 陳惠國、王中允、嚴國基,「路段流出率與路段流入率容量限制之比較-以動態用路人均衡路徑選擇模型為例」,運輸學刊, 25(3), 371 - 398頁,2013。
〔16〕 褚志鵬、葉岦陞,「道路擁擠收費政策在考量異質旅次之靜態分析」,運輸計劃季刊,30(1), 33-61頁,2001。
〔17〕 褚志鵬,「主線收費及匝道收費政策下之擁擠定價分析」,運輸計劃季刊,30(3), 513-537頁,2001。
〔18〕 鄭雅丹,「台北都會區進城費之最佳收費周界與費率水準之研究」,國立交通大學,碩士論文,2010。
〔19〕 賴禎秀、吳志仁,「高速公路實施匝道電子收費下最佳費率與經濟效益評估之研究」,運輸計劃季刊,30(1), 37-57頁,2002。
〔20〕 簡志峰,「匝道收費政策下之動態通行費率與擁擠費率訂價分析」,中華大學,碩士論文,2004。
〔21〕 Astarita, V. (1995), “Flow propagation description in dynamic network loading models.” In: Stephanedes, Y.J., Filippi, F. (Eds.), Proceedings of IV International Conference on Application of Advanced Technologies in Transportation Engineering (AATT). American Society of Civil Engineers (ASCE), pp. 599-603.
〔22〕 Bar-Gera, H., Hellman, F., Patriksson M. (2013), “Computational precision of traffic equilibria sensitivities in automatic network design and road pricing.” Transportation Research Part B: Methodological, Vol.47, Issue 1, pp. 485-500.
〔23〕 Bell, MGH, Iida, Y. (1997) Transportation network analysis, Wiley, New Jersey.
〔24〕 Boyce, D., Mattsson, L. G. (1999), “Modeling residential location choice in relation to housing location and road tolls on congested urban highway networks.” Transportation Research Part B: Methodological, Vol.33, Issue.8, pp.581-591.
〔25〕 Boyce, D., M.ASCE, Ralevic-Dekic, B., Bar-Gera, H. (2004), “Convergence of traffic assignments: How much is enough?” Journal of Transportation Engineering, Vol.130, No.1, pp.49-55.
〔26〕 Braid, R. M. (1996), “Peak-Load pricing of a transportation route with an unpriced substitute.” Journal of Urban Economics, Vol.40, Issue.2, pp.179-197.
〔27〕 Carey, M. (1986), “A constrain qualification for a dynamic traffic assignment model.” Transportation Science, Vol. 20, Issue 1, pp. 55-58.
〔28〕 Carey, M., McCartney, M. (2002), “Behavior of a whole-link travel time model used in dynamic traffic assignment.” Transportation Research Part B: Methodological, Vol. 36, No. 1, pp. 83-95.
〔29〕 Carey, M., Ge, Y. E. (2003), “Comparing whole-link travel time models.” Transportation Research Part B: Methodological, Vol. 37, No. 10, pp. 905-926.
〔30〕 Carey, M., Humphreys, P., McHugh, M., McIvor, R. (2014), “Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities.” Transportation Research Part B: Methodological, Vol. 65, No. 7, pp. 90-104.
〔31〕 Chen, M., Alfa A. S. (1991), “A network design algorithm using a stochastic incremental traffic assignment approach.” Transportation Science, Vol. 25, Issue 3, pp. 215-224.
〔32〕 Chen, H. K., Hsueh, C. F. (1998a), “A model and an algorithm for the dynamic user-optimal route choice problem.” Transportation Research Part B: Methodological, Vol. 32, No. 3, pp. 219-234.
〔33〕 Chen, H. K., Hsueh, C. F. (1998b), “Discrete-Time dynamic user-optimal departure time/route choice model.” Journal of Transportation Engineering, Vol. 124, No. 3, pp. 246-254.
〔34〕 Chen, H. K. (1999), Dynamic travel choice models: A variational inequality approach, Springer-Verlag., Berlin.
〔35〕 Chen, H. K. Wang, C. Y. (1999), “Dynamic capacitated user-optimal route choice problem,” Transportation Research Record: Journal of the Transportation Research Board, Vol.1667, No.3, pp. 16-24.
〔36〕 Chen, H. K. (2011), “Supernetworks for combined travel choice models,” The Open Transportation Journal, Vol. 5, No. 11, pp. 92-104.
〔37〕 Chiou, Y. C., Lan, L. W., Chang, K. L. (2013), “Sustainable consumption, production and infrastructure construction for operating and planning intercity passenger transport systems.” Journal of Cleaner Production, Vol.10, No.3, pp.13-21.
〔38〕 Chiou, Y. C., Liu, P. C. (2015), “Bi-level transit subsidy optimization models under ecological footprint constraints.”The 12th International Conference of Eastern Asia Society for Transportation Studies, Cebu, Philippine.
〔39〕 Cho, H.J., Smith, T.E., and Friesz, T.L. (2000), “A Reduction Method for Local Sensitivity Analyses of Network Equilibrium Arc Flows.” Transportation Research Part B: Methodological, Vol. 34, Issue 1, pp. 31-51.
〔40〕 Chung, B. D., Cho, H.J., Friesz, T.L., Huang. H., Yao, T. (2014), “Sensitivity analysis of user equilibrium flows revisited.” Networks and Spatial Economics, Vol. 14, Issue 2, pp. 183-207.
〔41〕 Dafermos, S. (1988), “Traffic equilibrium and variational inequalities.” Transportation Science, Vol. 14, Issue 1, pp. 42 - 54.
〔42〕 Dial, R. B. (2006), “A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration,” Transportation Research Part B: Methodological, Vol. 40, No. 10, pp. 917-936.
〔43〕 Fiacco A. V., McCormick, G. P. (1968), Nonlinear Programming: Sequential Unconstrained Minimization. Society for Industrial Applied Mathematics, Philadelphia.
〔44〕 Fiacco A. V. (1976), “Sensitivity analysis for nonlinear programming using penalty methods.” Mathematical Programming, Vol. 10, Issue 1, pp. 287-311.
〔45〕 Fisk C. S. (1984), “Game theory and transportation systems modeling.” Transportation Research Part B: Methodological, Vol. 18, No. 5, pp. 301-313.
〔46〕 Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., and Wie, B. W. (1993), “A variational inequality formulation of the dynamic network user equilibrium problem.” Operations Research, Vol. 41, Issue 1, pp. 179 - 191.
〔47〕 Friesz, T. L., Bernstein, D., Suo, Z., Tobin, R. L. (2001), “Dynamic network user equilibrium with state-dependent time lags.” Networks and Spatial Economics, Vol. 1, No. 3, pp. 319-347.
〔48〕 Janson, B. N., (1991), “Dynamic traffic assignment for urban road networks.” Transportation Research Part B: Methodological, Vol. 25, No. 3, pp. 143-161.
〔49〕 Joksimovic, D., Bliemer, M., Bovy, P. (2005), “Optimal toll design problem in dynamic traffic networks with joint route and departure time choice.”Transportation Research Record, Vol.1932, No. 6, pp. 61-72.
〔50〕 Joksimovic, D. (2007), Dynamic bi-level toll design approach for dynamic traffic networks, TRAIL Research School, The Netherlands.
〔51〕 Josefsson, M., Partriksson, M. (2007), “Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design.” Transportation Research Part B: Methodological, Vol. 41, Issue. 3, pp. 4-31.
〔52〕 Kockelman K. M., Kalmanje, S. (2005), “Credit-based congestion pricing: a policy proposal and the public’s response.” Transportation Research Part A: Policy and Practice, Vol. 39, No. 9, pp. 671-690.
〔53〕 Larsson, T. Partriksson, M. (1992), “Simplicial decomposition with disaggregated representation for the traffic assignment problem.” Transportation Science, Vol. 26, No 1, pp. 4-17.
〔54〕 Lee, D. H., Song, L., Wang, H. (2006), “Bilevel programming model and solutions of berth allocation and quay crane scheduling.” Transportation Research Board 85th Annual Meeting, Washington DC, United States. CD-ROM.
〔55〕 Marcotte P. (1986), “Network design problem with congestion effects: A case of bilevel programming.” Mathematical Programming, Vol. 34, No. 2, pp. 246-254.
〔56〕 Merchant D.K., Nemhauser G.L., (1978a), “A model and an algorithm for the dymatic traffic assignment problems.” Transportation Science, Vol. 12, Issue. 3, pp. 183-199.
〔57〕 Merchant D.K., Nemhauser G.L., (1978a), “Optimality conditions for a dynamic traffic assignment model.” Transportation Science, Vol. 12, Issue. 3, pp. 200-207.
〔58〕 Nie, X., Zhang, H. M. (2005), “A comparative study of some macroscopic link models used in dynamic traffic assignment.” Networks and Spatial Economics, Vol. 5, No. 1, pp. 89-115.
〔59〕 Nguyen, S., Dupuis, C. (1984), “An efficient method for computing traffic equilibria in networks with asymmetric transportation costs.” Transportation Science, Vol. 18, No. 2, pp. 185-202.
〔60〕 Olszewski, P., Xie, L. (2005), “Modelling the effects of road pricing on traffic in Singapore.” Transportation Research Part A: Policy and Practice, Vol. 39, No. 9, pp. 755-772.
〔61〕 Omar, B. A. (1988), Bilevel linear program: Analysis and application to the network design problem. Ph.D. Thesis in Business Administration, University of Illinois at Urbana-Champaign.
〔62〕 Partriksson, M. (1994), The traffic assignment problem: Models and methods, VSP Utrecht, Netherlands.
〔63〕 Patriksson, M., Rockafellar R. T. (2003), “Sensitivity analysis of aggregated variational inequality problems, with application to traffic equilibria.” Transportation Science, Vol.37, No.1, pp. 56-68.
〔64〕 Partriksson, M. (2004), Transportation Science, “Sensitivity Analysis of Traffic Equilibria.” Vol. 38, Issue. 3, pp. 258-281.
〔65〕 Pigou A. C. (1920), The economics of welfare. McMillan&Co., London.
〔66〕 Ran, B., Boyce, D. E., LeBlanc, L. J. (1993), “A new class of instantaneous dynamic user-optimal traffic assignment models.” Operations Research, Vol. 4, No. 1, pp. 192-202.
〔67〕 Ran, B., Boyce, D. E. (1994), Dynamic urban transportation network models: Theory and implications for intelligent vehicle highway systems, Lecture notes in economics and Mathematical Systems 417, Springer-Verlag. New York.
〔68〕 Ran, B., Boyce, D. E. (1996), “A link-based variational inequality formulation of ideal dynamic optimal route choice problem.” Transportation Research Part C: Emerging Technologies , Vol. 4, No. 1, pp.1-12.
〔69〕 Rudin, W. (1958), “Analyticity, and the maximum modulus principle.” Duke Mathematical Journal, Vol. 20, Issue 2, pp. 449-457.
〔70〕 Sheffi, Y. (1985), Urban transportation networks: Equilibrium analysis with mathematical programming methods, New Jersey: Prentice-Hall Inc.
〔71〕 Smith, M. J., Ghali M. (1991), “The dynamics of traffic assignment and traffic control: A theoretical study.” Transportation Research Part B: Methodological, Vol. 24, No. 6, pp. 409-422.
〔72〕 Smith, M. J. (1993), “A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity-constrained road networks,” Transportation Research Part B: Methodological, Vol. 27, Issue. 1, pp. 49-63.
〔73〕 Smith, M. J. (1998), “The existence, uniqueness and stability of traffic equilibria.” Transportation Research Part B: Methodological, Vol. 13, No. 4, pp. 295–304.
〔74〕 Tobin, R. L. (1986), “Sensitivity analysis for variational inequalities.” Journal of Optimization Theory and Applications, Vol. 48, Issue 1, pp. 191-204.
〔75〕 Tobin, R. L., Friesz, T. L. (1988), “Sensitivity analysis for equilibrium network flow.” Transportation Science, Vol. 22, Issue 4, pp. 242 - 250.
〔76〕 Viti, F. S., Catalano, F., Li, M., Lindveld, C., Zuylen H. V. (2003), “An optimization problem with dynamic route-departure time choice and pricing.” Transportation Research Board 85th Annual Meeting, Washington DC, United States. CD-ROM.
〔77〕 Washbrook, K., Haider, W., Jaccard, M. (2006), “Estimating commuter mode choice: A discrete choice analysis of the impact of road pricing and parking charges.” Transportation, Vol. 33, No. 6, pp. 621-639.
〔78〕 Wu, D., Yin, Y., Yang, H. (2011), “The independence of volume–capacity ratio of private toll roads in general networks.” Transportation Research Part B: Methodological, Vol.45, Issue 1, pp.96-101.
〔79〕 Xu, Y. W., Wu, J. H., Florian, M. (1998), “An efficient algorithm for the continuous network loading problem: a DYNALOAD implementation.” In: Bell, M.G.H. (Ed.), Transportation Networks: Recent Methodological Advances. Pergamon, pp. 51-66.
〔80〕 Xu, Y. W., Wu, J. H., Florian, M., Marcotte, P., Zhu, D. L. (1999), “Advances in the continuous dynamic network loading problem.” Transportation Science, Vol. 33 No. 4, pp.341-353.
〔81〕 Yamamoto, T., Fujii, S., Kitamura, R., Yoshida, H. (2000), “Analysis of time allocation, departure time, and route choice behavior under congestion pricing.” Transportation Research Record, Vol. 1725, No. 5, pp. 95-101.
〔82〕 Yang, H., Yagar, S. (1995), “Traffic assignment and signal control in saturated road networks.” Transportation Research Part A: Policy and Practice, Vol.29, No.2, pp.125-139.
〔83〕 Yang, H., and Lam, W. H. K. (1996), “Optimal road tolls under conditions of queueing and congestion.” Transportation Research Part A: Policy and Practice, Vol.30, Issue.5, pp.319-322.
〔84〕 Yang, H., Bell, M. G. H. (2007), “Sensitivity Analysis of Network Traffic Equilibrium Revisited: The Corrected Approach.” 4th IMA International Conference on Mathematics in Transport, London, United Kingdom, pp. 373-395.
〔85〕 Yin, Y. (2000), “Genetic-Algorithms-Based approach for bilevel programming models.” Journal of Transportation Engineering, Vol.126, Issue.2, pp.115-120.
〔86〕 Zhu, D., Marcotte, P. (2000), “On the existence of solutions to the dynamic user equilibrium problem.” Transportation Science, Vol. 34, No. 4, pp.402-414.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明