博碩士論文 983403020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.225.156.159
姓名 陳俊名(Chen Chun-Ming)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 保留髖關節置換手術之生物力學研究
(The Biomechanical Investigations for Preserving Hip System Replacement)
相關論文
★ 高彎曲度之人工膝關節多軸向動態磨耗試驗機開發★ 人工髖關節雙軸向動態磨耗試驗平台開發
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 大型犬人工髖關節之應力分析
★ 人體膝關節之高度彎曲電腦動態實體模型的建立★ 足型與足壓電腦輔助分析系統開發
★ 超低溫液態氮生物試片儲存槽的研發★ 腰椎人工椎間盤之運動軌跡分析
★ 表面置換型人工臏股骨關節的設計與分析★ 二維及三維足型的應用與高跟鞋足壓的量測分析
★ 心血管支架塑性成形的有限元素分析★ 靜態穿椎弓足內固定器之剛性對腰椎受力之影響
★ 腰椎內固定器之動態型式的生物力學評估★ 超低溫高安全性生物試片儲存槽與即時監管理系統之開發
★ 超低溫液態氮生物試片儲存系統的硬體研發★ 拇趾外翻足的鞋內矯正器之設計與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全髖關節置換手術(THR)是髖關節炎最常見的治療方式,儘管此類的有柄式植入物(stemmed)無論在外型、材質、或表面塗布上已有相當成熟的發展,但對於應力遮蔽、植體鬆動及骨溶解等問題依然無法解決。因此,為解決有柄式植入物在手術過程中需切除整顆球頭、鋸除全部股骨頸及掏空骨髓腔等步驟,便衍生出無柄式植入物(non-stemmed)的設計,以求保留髖關節大部分的骨質。而現已發行的無柄式植入物僅由中心柱或骨釘與股骨頸固定,臨床上常發生中心柱斷裂,或罩杯晃動滑脫而未能達到治療目的。
為解決目前無柄式植入物遭遇的問題,本研究由術前規劃開始,重建骨頭模型,取得中心軸及股骨頸外部曲面資料等參數進行植入物設計,並以電腦數值模擬與生物力學測試的方式,研究不同植入物於股骨上的力學傳遞差異性,並參考分析結果,配合臨床醫師提供意見,進行植入物的設計修改。後續考量到臨床上可能遇到的問題,再以電腦數值模擬對骨釘斷裂情況及手術切除誤差進行探討。此外,為了簡單化及標準化手術流程,提高手術的精確性,設計專用之切除及組裝手術器械,規劃其手術流程,並使用3D列印技術製作出樣本以模擬過程,驗證客製化無柄式植入物設計的可行性。
客製化的植入物由於外型與股骨頸貼近,因此在植入物、骨釘、骨頭上的應力,均比現有的無柄式植入物有更好的表現,以生物力學測試的結果看來,客製化的外型確實可降低鬆動的發生,在骨釘斷裂與手術切除誤差的情況下,依然能緊密地固定在股骨頸上。但無柄式相較有柄式植入物的設計,其穩定度還是比較低,因此在選擇置換手術系統時,必須在手術便利性與結構穩定性之間取捨。對於只有關節磨損、退化性或類風濕性關節炎及年輕的病患,無柄式植入物是較好的選擇,但如果患有骨質疏鬆、股骨頸缺血性壞死或骨折的病患,還是以全髖關節置換手術為佳。
摘要(英) Total hip replacement (THR) is the most common treatment modality in hip osteoarthritis. Despite improvements in shape, material, and coating for hip stem, both stress shielding and aseptic loosening have been the major drawbacks of stemmed hip arthroplasty. Some non-stemmed systems were developed to avoid rasping off the intramedullary canal and evacuating the bone marrow due to stem insertion. At present, the non-stemmed design resulted in cup loosening and central bar fracturing in clinically because it was insufficient in the restriction.
In this study, many cup systems with minimal removal of the healthy neck were investigated to evaluate their biomechanical effects on the proximal femur and implants. The finite-element models of one intact, stemmed, resurfacing, cylinder, parallel, cross and nail femora were developed. The resurfacing and cylinder were selected as the representative of the ready-made implants. The parallel, cross and nail systems were selected as the representative of the custom-made implants. The stress distribution and interface micromotion were selected as the comparison indices. The biomechanical experiment were using cylinder, parallel and cross models to compare stability on the cup design and two screw constructions. The finite element analysis results showed that both stress distribution of all non-stemmed femora are consistently more similar to the intact femur than the stemmed one. Around the proximal femur, the stem definitely induces the stress-shielding phenomenon. The custom-made system with the anatomy-shaped cup can make intimate contact with the neck cortex and reduce the bone-cup micromotion and the implant stress. Comparatively, the reamed femoral head provides weaker support to the resurfacing cup causing higher interfacial micromotion. All the screws of the non-stemmed systems were highly stressed to serve as the potential for the failure of plastic yielding or fatigue cracking. The biomechanical experiment results showed that the stiffness of the custom-made cup and assisted screw with the cortical bone were better than the contrapositions.
In conclusion, the reserved femoral neck could act as the load-transferring medium from the acetabular cup, femoral neck to the diaphysial bone, thus depressing the stress-shielding effect below the neck region. If the hip-cup construct can be definitely stabilized, the non-stemmed design could be an alternative of hip arthroplasty for the younger or the specific patients with the disease limited only to the femoral head.
關鍵字(中) ★ 人工髖關節
★ 無柄式髖關節
★ 力學測試
★ 有限元素分析
關鍵字(英)
論文目次 目錄
中文摘要.....................................................................................................................................i
英文摘要....................................................................................................................................ii
致謝...........................................................................................................................................iv
目錄............................................................................................................................................v
圖目錄.....................................................................................................................................viii
表目錄......................................................................................................................................xv
ㄧ、緒論....................................................................................................................................1
1-1 前言...............................................................................................................................1
1-2 髖關節介紹...................................................................................................................3
1-2-1 髖關節解剖學 ..........................................................................................................3
1-2-2 髖關節運動學 ..........................................................................................................9
1-2-3 髖關節病理學 ........................................................................................................10
1-2-4 髖關節生物力學 ....................................................................................................13
1-2-5 骨結構與材料性質................................................................................................15
1-2-6 骨質重塑現象 ........................................................................................................17
1-3 退化性髖關節炎治療方式.........................................................................................19
1-3-1 藥物與物理治療 ....................................................................................................19
1-3-2 髖關節微型手術 ....................................................................................................20
1-3-3 人工髖關節置換術................................................................................................21
1-4 研究目的與方法.........................................................................................................23
1-4-1 研究動機與目的 ....................................................................................................23
1-4-2 研究方法 ................................................................................................................24
1-5 論文架構.....................................................................................................................25
二、文獻回顧..........................................................................................................................26
2-1 股骨頸原始角度定義.................................................................................................26
2-2 無柄式髖關節之臨床表現及設計概念.....................................................................29
2-2-1 表面置換型無柄式植入物....................................................................................29
2-2-2 股骨頸保護型植入物............................................................................................32
2-3 髖關節之有限元素分析.............................................................................................36
2-4 髖關節之生物力學測試.............................................................................................41
2-5 應力遮蔽效應.............................................................................................................45
三、材料與方法......................................................................................................................47
3-1 植入物與手術器械設計.............................................................................................47
3-1-1 三維骨頭模型重建................................................................................................48
3-1-2 客製化解剖型植入物設計....................................................................................50
3-1-3 手術器械設計 ........................................................................................................57
3-1-4 手術流程規劃 ........................................................................................................61
3-1-5 三維列印加工技術................................................................................................67
3-2 髖關節植入物有限元素力學分析.............................................................................68
3-2-1 前言與目的 ............................................................................................................68
3-2-2 分析模型建立 ........................................................................................................70
3-2-3 模型材質設定 ........................................................................................................76
3-2-4 模型負載、邊界與介面設定................................................................................77
3-3-5 有限元素網格化 ....................................................................................................81
3-2-6 有限元素分析後處理探討參數介紹....................................................................84
3-2-7 有限元素分析模型驗證........................................................................................86
3-3 髖關節生物力學測試.................................................................................................87
3-3-1 前言與目的 ............................................................................................................87
3-3-2 測試模型 ................................................................................................................89
3-3-3 髖關節測試夾治具設計........................................................................................90
3-3-4 測試負載與失效標準............................................................................................92
3-3-5 測試結果處理探討參數介紹................................................................................93
四、研究成果討論..................................................................................................................95
4-1 解剖無柄式髖關節植入物與器械快速成形結果.....................................................95
vii
4-1-1 植入物與器械之 3D 列印結果 .............................................................................95
4-1-2 手術流程模擬結果................................................................................................96
4-1-3 器械模擬流程結果討論......................................................................................100
4-2 無柄式髖關節有限元素力學分析結果...................................................................101
4-2-1 有限元素模型驗證..............................................................................................101
4-2-2 無柄式與有柄式力學結果比較..........................................................................102
4-2-3 無柄式髖關節外型結果比較..............................................................................108
4-2-4 不同骨釘鎖入方向結果比較..............................................................................113
4-2-5 兩種三角結構結果比較......................................................................................117
4-2-6 骨釘斷裂與手術不貼合結果比較......................................................................123
4-2-7 不同無柄式設計綜合結果比較..........................................................................130
4-3 無柄式髖關節力學測試結果討論...........................................................................131
4-3-1 骨頭外型切削結果..............................................................................................131
4-3-2 植入物打樣結果 ..................................................................................................132
4-3-3 夾治具打樣結果 ..................................................................................................134
4-3-4 三組模型的負載-位移測試結果.........................................................................135
4-3-5 三組模型的罩杯與骨頭分離結果.......................................................................139
4-3-6 三組模型的骨釘擴孔結果...................................................................................140
4-3-7 植入物的外型差異性討論..................................................................................141
4-3-8 不同的骨釘鎖入方向對結構影響討論..............................................................144
4-3-9 生物力學測試結果綜合討論..............................................................................146
五、結論與未來展望............................................................................................................148
5-1 結論.............................................................................................................................148
5-2 未來展望.....................................................................................................................149
參考文獻................................................................................................................................151
參考文獻 [1] Jennifer M.H. and Charles G.H. “Projections of US prevalence of arthritis and associated activity limitations.” Arthritis & Rheumatism, Vol. 54(1), pp. 226–229, 2006.
[2] Perruccio A.V., Power J.D. and Badley E.M. “Revisiting arthritis prevalence projections--it′s more than just the aging of the population.” The Journal of Rheumatology, vol. 33(9), pp. 1856-1862, 2006.
[3] Power J.D., Badley E.M., French M.R., Wall A.J. and Hawker G.A. “Fatigue in osteoarthritis: a qualitative study.” BMC Musculoskeletal Disorders, Vol. 9, pp. 63-70, 2008.
[4] Turkiewicz A., Petersson I.F., Björk J., Hawker G., Dahlberg L.E., Lohmander L.S. and Englund M. “Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032.” Osteoarthritis and Cartilage, Vol. 22(11), pp. 1826–1832, 2014.
[5] Maloney W.J., Schmalzried T. and Harris W.H. “Analysis of long-term cemented total hip arthroplasty retrievals,” Clinical Orthopaedics & Related Research, Vol. 405, pp. 70-78, 2002.
[6] Chen W.P., Tai C.L., Lee M.S., Lee P.C., Liu C.P. and Shih C.H. “Comparison of stress shielding among different cement fixation modes of femoral stem in total hip arthroplasty – A three-dimensional finite element analysis,” Journal of Medical and Biological Engineering, Vol. 24, pp. 183-187, 2004.
[7] Padgett D.E. and Warashina H. “The unstable total hip replacement,” Clinical Orthopaedics & Related Research, Vol. 420, pp. 72-79, 2004.
[8] Shih C.H., Chen W.P., Tai C.L., Kuo R.F., Wu C.C. and Chen C.H. “New concepts-biomechanical studies of a newly designed femoral prosthesis (cervico-trochanter prosthesis),” Clinical Biomechanics, Vol. 12, pp. 482-490, 1997.
[9] Tai C.L., Shih C.H., Chen W.P., Lee S.S., Liu Y.L., Hsieh P.H. and Chen W.J. “Finite element analysis of the cervico-trochanteric stemless femoral prosthesis,” Clinical Biomechanics, Vol. 18, pp. S53-S58, 2003.
[10] Chen T.H., Lung C.Y. and Cheng C.K. “Biomechanical comparison of a new stemless hip prosthesis with different shapes-a finite element analysis,” Journal of Medical and Biological Engineering, Vol. 29, pp. 108-113, 2009.
[11] 錢本文,保留股骨頸的人工髖關節置換術,中華創傷骨科雜誌,2007。
[12] 呂文源,「陶瓷球頭人工髖關節之磨耗性質分析」,國立陽明大學,碩士論文,1998年。
[13] 許世昌,新編解剖學,1996。
[14] 實用骨科解剖圖譜(下肢):股骨頸的內傾角與股骨頸的前傾角,取自http://yxsj.baiduyy.com/gukejinping/a3/lower1.htm
[15] John W. Hole, Jr., Karen A. Koos., Human Anatomy,胡明一、孫穆乾、陳懿慧等譯,藝軒圖書,民國八十四年。
[16] Anatomy & Physiology 2100 with Ritucci/miska at Wright State University,取自https://www.studyblue.com/notes/note/n/chapter-8/deck/8056904
[17] 醫學知識庫:多針固定術,取自http://pmmp.cnki.net/Operation/Details.aspx?id=1491
[18] Duda G.N., Schneider E. and Chao Y.S. ”Internal forces and moments in the femur during walking.” Journal of Biomechanics, Vol. 30, pp.933-941, 1997.
[19] Stansfield B.W. and Nicol A.C. ”Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation.” Clinical Biomechanics, Vol. 17, pp.130-139, 2002.
[20] Hurwitz D.E., Foucher K.C. and Andriacchi T.P. ”A new parametric approach for modeling hip forces during gait.” Journal of Biomechanics, Vol. 36, pp.113-119, 2003.
[21] Stansfield B.W., Nicol A.C., Paul J.P., Kelly I.G., Graichem F. and Bergmann G. ”Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb.” Journal of Biomechanics, Vol. 36, pp.929-936, 2003.
[22] 韓毅雄,骨頭肌肉系統之生物力學,華杏出版社,1983。
[23] Johnston R.C. and Smidt G.L. ”Measurement of hip-joint motion during walking.Evaluation of an electrogoniometric method.” The Journal of Bone and Joint Surgery American, Vol. 51, pp.1083, 1969.
[24] 劉華昌,基本骨科學,合記圖書出版社,1988。
[25] 林天祐,骨科學,台灣商務印書館,1988。
[26] 髖關節解剖特點,取自http://www.zd444.com/xinwendongtai/299.html
[27] English T.A. and Kilvington M. “In vivo records of hip loads using a femoral implant with telemetric output (a prelimary report).” Journal of Biomedical Engineering, Vol. 1(2), pp. 111–115, 1979.
[28] Draganich L.F., Andriacchi T.P., Strongwater A.M. and Galante J.O. “Electronic measurement of instantaneous foot-floor contact patterns during gait.” Journal of Biomechanics, Vol. 13(10), pp. 875–880, 1980.
[29] Debra E.H., Kharma C.F. and Thomas P.A. “A new parametric approach for modeling hip forces during gait.” Journal of Biomechanics, Vol. 36(1), pp. 113–119, 2003,
[30] Heller M.O., Bergmann G., Kassi J.-P., Claes L., Haas N.P. and Duda G.N. “Determination of muscle loading at the hip joint for use in pre-clinical testing.” Journal of Biomechanics, Vol. 38(5), pp. 1155–1163, 2005.
[31] Kotzar G.M., Davy Dr.D.T., Goldberg V.M., Heiple K.G., Berilla J., Heiple Jr. K.G., Brown R.H. and Burstein A.H. “Telemeterized in vivo hip joint force data: A report on two patients after total hip surgery.” Journal of Orthopaedic Research, Vol. 9(5), pp. 621–633, 1991.
[32] Bergmann G., Graichen F. and Rohlmann A. “Is staircase walking a risk for the fixation of hip implants?” Journal of Biomechanics, Vol. 28(5), pp. 535–553, 1995.
[33] Margareta Nordin,骨骼肌肉系統基礎生物力學,林燕慧譯,LIPPINCOTT WILLIAMS & WILKINS出版社,2013
[34] 實用骨科解剖圖譜(下肢):骨小梁系統,取自http://yxsj.baiduyy.com/gukejinping/a3/lower1.htm
[35] Terrier A. 「Adaptation of bone to mechanical stress: theoretical model, experimental identification and orthopedic application. Swiss Federal Institute of Technology. 」 PhD Thesis, 1999.
[36] Thomas N.H. and Vicente G. “Evaluation of cortical bone by computed tomography.” Journal of Bone and Mineral Research, Vol. 11(10), pp. 1518–1525, 1996.
[37] Dieter C.W., Norbert S., Thomas P., Klaus R., Dieter W. and Raimund F. “Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.” Journal of Biomechanics, Vel. 33(10), pp. 1325-1330, 2000.
[38] Peter Z., Richard B.C. and John R.H. “Some basic relationships between density values in cancellous and cortical bone.” Journal of Biomechanics, Vel. 41(9), pp. 1961-1968, 2008.
[39] Cowin S.C. and Hegedus D.H. “Bone remodeling I: theory of adaptive elasticity.” Journal of Elasticity, Vol. 6, pp. 313-326, 1976.
[40] Reilly D.T. and Burstein A.H. “The elastic and ultimate properties of compact bone tissue.” Journal of Biomechanics, Vol. 8, pp. 393-405, 1975.
[41] Ford C.M. and Keaveny T.M. “The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation.” Journal of Biomechanics, Vol. 29(10), pp. 1309-1317, 1996.
[42] Fyhrie D.P. and Vashishth D. “Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension.” Bone, Vol. 26(2), pp. 169-173, 2000.
[43] Keaveny T.M., Wachtel E.F., Ford C.M. and Hayes W.C. “Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.” Journal of Biomechanics, Vol. 27(9), pp. 1137-1146, 1994.
[44] Kopperdahl D.L. and Keaveny T.M. “Yield strain behavior of trabecular bone.” Journal of Biomechanics, Vol. 31(7), pp. 601-608, 1998.
[45] Linde F., Hvid I. and Madsen F. “The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens.” Journal of Biomechanics, Vol. 25(4), pp. 359-368, 1992.
[46] Morgan E.F. and Keaveny T.M. “Dependence of yield strain of human trabecular bone on anatomic site.” Journal of Biomechanics, Vol. 34(5), pp. 569-577, 2001.
[47] Wolff J.L. “The law of bone remodeling.” (Das Gesetz der Transformation der knochen, Kirschwald, 1982.) (Translated by Marquet P, Furlong R.) Springer, Berlin, 1986.
[48] Chamay A. and Tschantz P. “Mechanical influence in bone remodeling. Experimental research on Wolff’s law.” Journal of Biomechanics, Vol. 5, pp. 173-180, 1972.
[49] Lanyon L.E. “The measurement and biological significance of bone strain in vivo.” In: Cowin SC (ed) Mechanical properties of bone. ASME, New York, pp. 93-105, 1981.
[50] O′Conner J.A. and Lanyon L.E. “The effects of strain rate on mechanically adaptive bone remodeling.” 28th Annual Orthopaedic Research Society, New Orleans, LA. 1982.
[51] Burr D.B., Martin R.B., Schaffler M.B. and Radin E.L. “Bone remodeling in response to in vivo fatigue microdamage.” Journal of Biomechanics, Vol. 18(3), pp. 189-200, 1985.
[52] Barrett A.R.W., Davies B.L., Gomes M.P.S.F., Harris S.J., Henckel J., Jakopec M., Baena F.M.R. and Cobb J.P. “Preoperative planning and intraoperative guidance for accurate computer-assisted minimally invasive hip resurfacing surgery,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vel. 220, pp. 759-773, 2006.
[53] Mr. Stuart Edwards:Hip and Knee Surgeon,取自http://www.hipandkneesurgery.ie/hips-conditions.html
[54] Tulane Universty school of medicine, Department of Orthopaedics,取自http://tulane.edu/som/departments/orthopaedics/clinical-care/total-hip-replacement.cfm
[55] Steinberg M.E., Hayken G.D. and Steinberg D.R. “A Quantitative System For Staging Avascular.” The Journal of Bone and Joint Surgery, Vel. 77, pp.34-41, 1995.
[56] Siguier T., Siguier M. and Judet T. “Partial Resurfacing Arthroplasty of the Femoral Head in Avascular Necrosis.” Clinical Orthopaedics and Related Research, Vol. 386, pp. 85-92, 2001.
[57] Marvin E.S. and David R.S. “Classification systems for osteonecrosis: an overview.” The Orthopedic Clinics of North America, Vel. 35, pp.273-83, 2004.
[58] Michael A.M., German A.M. and Lynne C.J. “Systematic Analysis of Classification Systems for Osteonecrosis of the Femoral Head.” The Journal of Bone and Joint Surgery American, Vel. 88(3), pp. 16-26, 2006.
[59] 陳俊名,「客製化局部表面置換型人工髖關節的設計與分析」,國立中央大學,碩士論文,2009年。
[60] Stryker公司:對置換Cormet Hip Resurfacing System的病人進行術後追蹤,取自http://www.aboutstryker.com/hip/treating/hip-resurfacing.php
[61] 殷浩,無柄人工股骨頭的應用初探與比較,中國骨與關節損傷雜誌,2005。
[62] 林月秋,無柄人工髖關節置換40例,中華創傷骨科雜誌,2006。
[63] 孟林,無柄人工髖關節置換術研究進展,中醫正骨,2007。
[64] 馬洪,無柄解剖型人工髖關節全髖置換的療效觀察,中華中西醫學雜誌,2008。
[65] Isaac B., Vettivel S., Prasad R., Jeyaseelan L. and Chandi G. “Prediction of the femoral neck-shaft angle from the length of the femoral neck.” Clinical Anatomy, Vol. 10(5), pp. 318–323, 1997.
[66] Alonso C.G., Curiel M.D., Carranza F.H., Cano R.P. and Peréz A.D., “Femoral Bone Mineral Density, Neck-Shaft Angle and Mean Femoral Neck Width as Predictors of Hip Fracture in Men and Women.” Osteoporosis International, Vol. 11(8), pp. 714-720, 2000.
[67] Michael O., Edward T.D., Price A.M.G., James P.W. and Emil H.S. “The Reliability of Radiographic Assessment of Femoral Neck-Shaft and Implant Angulation in Hip Resurfacing Arthroplasty.” The Journal of Arthroplasty, Vol. 24(3), pp. 333–340, 2009.
[68] John A., Stephane G.B., Burton M., Raja C. and John R. “The Effect of the Cam Deformity on the Insertion of the Femoral Component in Hip Resurfacing.” The Journal of Arthroplasty, Vol. 26(3), pp. 458–466, 2011.
[69] Marmor M., Nystuen C., Ehemer N., McClellan R.T. and Matityahu A. “Accuracy of in situ neck-shaft angle and shortening measurements of the anatomically reduced, varus malreduced and shortened prox.” Injury, Vol. 43(6), pp. 846–849, 2012.
[70] Gilligan I., Chandraphak S. and Mahakkanukrauh P. “Femoral neck-shaft angle in humans: variation relating to climate, clothing, lifestyle, sex, age and side.” Journal of Anatomy, Vol. 223(2), pp. 133–151, 2013.
[71] Seamus O.B. “Femoral offset in total hip replacement: A study of anatomical offset in the Northern Ireland population.” International Journal of Orthopaedic and Trauma Nursing, Vol. 18(3), pp. 162–169, 2014.
[72] Trentani C. and Vaccarino F. “Complications in surface replacement arthroplasty of the hip: Experience with the Paltrinieri-Trentani Prosthesis.” International Orthopaedics(SICOT), Vol. 4, pp.247-252, 1981.
[73] Head W.C. ”Wagner surface replacement arthoplasty of the hip.” The Journal of Bone and Joint Surgery, Vol. 63-A, pp.420-427, 1981.
[74] Huiskes R., Strens P., Heck J.V. and Sloof T. ”Interface stress in the resurfaced hip.” Acta Orthopaedica Scandinavica, Vol. 56, pp.474-478, 1985.
[75] Munting E., and Verhelpen M. ”Fixation and effect on bone strain pattern of a stemless hip prosthesis.” Journal of Biomechanics, Vol. 28, pp.949-961, 1995.
[76] Makarand G.J., Suresh G.A., Freeman M. and Michael H.S., “Analysis of a femoral hip prosthesis designed to reduce stress shielding.” Journal of Biomechanics, Vol. 33, pp.1655-1662, 2000.
[77] Stem E., Duffy G., Blasser K. and Oconnor M.I., “Stem Fracture of Conserve Hemiarthroplasty.” The Journal of Arthroplasty, Vol. 19, pp.923-926, 2004.
[78] 錢本文,股骨頸保護裝置,2003
[79] 錢本文,十好無柄:革命性的世紀人工髖關節,中國醫療專題報導,2002。
[80] 劉玉軍,人工髖關節置換術及其併發症的防治,第二軍醫大學出版社,2007。
[81] 施魯孫,股骨頭置換模組及手術工具,2010
[82] Brekelmans, W.A.M., Poort, H.W., and Sloof, T.J.J.H. ”A new method to analyse the mechanical behavior of skeletal parts. “ Acta Orthopaedica Scandinavica, Vol 43, pp.301-317, 1972.
[83] Yuichi W., Naoto S. and Shigeaki M. ” Biomechanical Study of the Resurfacing Hip Arthroplasty Finite Element Analysis of the Femoral Component”, The Journal of Arthroplasty, Vol. 15, No. 4, pp. 505-511, 2000.
[84] Gross S., Abel E.W., “A finite element analysis of hollow stemmed hipp rostheses as a means of reducing stress shielding of the femur.” Journal of Biomechanics, Vol. 34, pp.995–1003, 2001.
[85] Chae S.W., Lee J.H. and Choi H.Y. “Biomechanical Study on Distal Filling Effects in Cementless Total Hip Replacement.” JSME International Journal, Vol 49, No.1, pp.147-156, 2006.
[86] 戴久琳,「人工髖關節骨柄之設計與材質對近端股骨之生物力學的影響」,國立台灣科技大學,碩士論文,2006年。
[87] Little J.P., Taddei F. and Viceconti M. “Changes in femur stress after hip resurfacing Arthroplasty: Response to physiological loads.” Clinical Biomechanics, V 22 pp.440–448, 2007.
[88] Shih .S., Tseng C.S., Lee C.C. and Lin S.C. ” Influence of muscular contractions on the stress analysis of distal femoral interlocking nailing.” Clinical Biomechanics, Vol 23, pp.38–44, 2008.
[89] Carolina D.G., Andrew M.N. and Martin B. “Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry.” Journal of Biomechanics, Vol. 43(3), pp. 512–520, 2010
[90] Nir T., Zohar Y., Christof W., Peter A. and Sebastian E. “Patient-specific finite element analysis of the human femur—A double-blinded biomechanical validation.” Journal of Biomechanics, Vol. 44(9), pp. 1666–1672, 2011.
[91] Alexander T., Kleovoulos A.s, Georgios M. and Nikolaos M. “Fracture risk in the femoral hip region: A finite element analysis supported experimental approach.” Journal of Biomechanics, Vol. 45(11), pp. 1959–1964, 2012.
[92] Kyle K.N., Seth G., Pierre G., Peter C. and Steven K.B. “Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration.” Journal of Biomechanics, Vol. 46(7), pp. 1231–1236, 2013.
[93] Junga J.M. and Kim C.S. “Analysis of stress distribution around total hip stems custom-designed for the standardized Asian femur configuration.” Biotechnology & Biotechnological Equipment, Vol. 28(3), pp. 525-532, 2014.
[94] Tai C.L., Lee M.S., Chen W.P., Hsieh P.H., Lee P.C. and Shih C.H. “Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis – An experimental study.” Bio-Medical Materials and Engineering, Vol. 15, pp.239-249, 2005.
[95] Carolyn A., Bassam A.M., Jerome T., Antony J.H. and Nelson V.G. “Hip Resurfacing Femoral Neck Fracture Influenced by Valgus Placement.” Clinical Orthopaedics and Related Research, Vol. 465, pp. 71-79, 2007.
[96] Papini M., Zdero R. and Zalzal P. “The Biomechanics of Human Femurs in Axial and Torsional Loading:Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs.” Transactions of the ASME, Vol. 129, pp.12-19, 2007.
[97] Deuel C.R., Jamali A.A., Stover S.M. and Hazelwood S.J. “Alterations in femoral strain following hip resurfacing and total hip replacement.” The Journal of Bone and Joint Surgery, Vol. 91-B, pp.124-130, 2009.
[98] Wik T.S., Ostbyhang P.O., Klaksvik J. and Aamodt A. “Increased strain in the femoral neck following insertion of a resurfacing femoral prosthesis.” The Journal of Bone and Joint Surgery, Vol. 91-B, pp.461-467, 2012.
[99] Engh C.A., Bobyn J.D. and Glassman A.H. “Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and results.” Society of Bone and Joint Surgery – British Ed, Vol. 69-B, pp. 45-55, 1987.
[100] William D.B., William J.C., Engh C.A. and Charles A.E. “Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement.” Journal of Bone and Joint Surgery, Vol. 79, pp.1007-1012, 1997.
[101] Tai C.L., Chen W.P., Lee M.S., Lee P.C. and Shih C.H. “Comparison of stress shielding between straight and curved stems in cementless total hip arthoplasty- an in vitro experimental study.” Journal of Medical and Biological Engineering, Vol. 24, pp. 177-181, 2004.
[102] Qian Q.R., Gou S.H., Huang G.F., Wu Y.L. and Shi L.S. “Clinical pathology analysis of patient treated with Bell-Shape Bone-Grow-In Hip Prosthesis.” Journal of Chinese Clinical Medicine, Vel. 4, pp. 11-14, 2003.
[103] Wang M.C., Zao Q., Wu W.C., Sun Y.B. and Gao F. “Clinical Report of Total Hip Arthroplasty by Stem-less Total Hip of Prosthesis.” Orthopaedic Biomechanice Material and Clinicl Study, Vel. 1, pp. 17-19, 2004.
[104] Qi J.R., Wu H., Yang X.P., He Z.M. and Hou X.L. “Clinical Basic Theory of Stemless Hip Prosthesis.” Chinese Journal of Clinical Medicine, Vel. 3, pp. 46-49, 2004.
[105] Adams D. and Quigley S.”Hip resurfacing: Past, present and future.” Journal of Orthopaedic Nursing, Vel. 9, pp. 87-94, 2005.
[106] Duan M.Q.L., Yin H., Liu X.G., Huang D.H. and Zhao Q.H. “Preliminary Investigate and Comparison of Stemless Hip Replacement.” Chinese Journal of Bone and Joint Injury, Vel. 20, pp. 342-343, 2005.
[107] Lin Y.Q., Xu Y.Q., Wang Y.S., Tang X., Ding J., Ruan M., Li C.X. and Qian B.W. “Clinical applocation of stemless hip replacement in 40 cases.” Chinese Journal of Trauma, Vel. 22, pp. 820-823, 2006.
[108] Amstutz H.C., Duff M.J.L., Campbell P.A. and Dorey F.J. “The Effects of Technique Changes on Aseptic Loosening of the Femoral Component in Hip Resurfacing.” The Journal of arthroplasty, Vel. 22, pp. 481-489, 2007.
[109] Huang C.Y., Luo L.J., Lee P.Y., Lai J.Y., Wang W.T. and Lin S.C. “Efficient segmentation algorithm for 3D bone models construction on medical images.” Journal of Medical and Biological Engineering, Vel. 31, pp. 375-386, 2010.
[110] Viceconti M., Testi D., Gori R., Zannoni C., Cappello A., Lollis A.D. “HIDE:a new hybrid environment for the design of custom-made hip prosthesis.” Computer Methods and Programs in Biomedicine, Vel. 64, pp. 137-144, 2001.
[111] Stryker公司:Gamma3 Hip Fracture System,取自:http://www.osteosynthesis.stryker.com/products/gamma3.php?tab=1&vis=hcp&loc=eur
[112] Zimmer公司:Natural Nail® System,取自:http://www.zimmer.com/medical-professionals/products/trauma/zimmer-natural-nail-system.html
[113] Kempf I., Grosse A., Taglang G. and Favreul E. “Gamma nail in the treatment of closed trochanteric fractures. Results and indications of 121 cases.” Orthopaedics & Traumatology: Surgery & Research, Vol. 100(1), pp. 75–83, 2014.
[114] Zimmer公司:Patient Specific Instruments,取自:http://www.zimmer.com/medical-professionals/products/knee/patient-specific-instruments.html
[115] 國航科技:UP! 3D Printer Plus 2,取自:http://www.idea-diy.com/product-2.php
[116] Sawbones,取自http://www.sawbones.com
[117] Brand R.A., Pedersen D.R. and Friederich J.A. “The sensitivity of muscle force predictions to changes in physiologic cross-sectional area,” Journal of Biomechanics, Vel. 19, pp. 589-596, 1986.
[118] Huiskes R. and Boeklagen R. “Mathematical shape optimization of hip prosthesis design,” Journal of Biomechanics, Vel. 22, pp. 793-804, 1989.
[119] Duda G.N., Brand D., Freitag S., Liers W. e and Schneider E. “Variability of femoral muscle attachments,” Journal of Biomechanics, Vel. 29, pp. 1185-1190, 1996.
[120] Taylor M.E., Tanner K.E., Freeman M.A.R. and Yettram A.L. “Stress and strain distribution within the intact femur: compression or bending?” Medical Engineering & Physics, Vel. 18, pp. 122-131, 1996.
[121] Simoes J.A., Vaz M.A., Blatcher S. and Taylor M. “Influence of head constraint and muscle forces on the strain distribution within the intact femur,” Medical Engineering & Physics, Vel. 22, pp. 453-459, 2000.
[122] SolidWorks Simulation 原廠教育手冊,SolidWizard 實威國際,2011。
[123] Chen W.P., Tai C.L., Shih C.H., Hsieh P.H., Leou M.C. and Lee M.S. “Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis.” Clinical Biomechanics, Vol. 19, pp.255-262, 2004.
[124] 人體下肢的生物力學,取自http://goo.gl/0O65F8
[125] Chen C.M., Tsai W.C., Lin S.C. and Tseng C.S. “Effects of stemmed and nonstemmed hip replacement on stress distribution of proximal femur and implant.” BMC Musculoskeletal Disorders, Vol.15, pp. 312–320, 2014.
[126] Engh C.A., Bobyn J.D. and Glassman A.H. “Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and results.” Journal of Bone and Joint Surgery, Vol. 69-B(1), pp.45-55, 1987.
[127] Asgari S.A., Hamouda A.M.S., Mansor S.B., Singh H., Mahdi E., Wirza R. and Prakash B., “Finite element modeling of a generic stemless hip implant design in comparison with conventional hip implants,” Finite Elements in Analysis and Design, Vel. 40, pp. 2027-2047, 2004.
[128] Waide V., Cristofolini L., Stolk J., Verdonschot N. and Toni A. “Experimental investigation of bone remodelling using composite femurs.” Clinical Biomechanics, Vel. 18, pp. 523-536, 2003.
[129] Chen C.M., Cheng C.T., Lin C.S., Lin S.C., Chiang C.C., Luo C.A. and Tseng C.S. “Biomechanical effects of bone-implant fitness and screw breakage on the stability and stress performance of the nonstemmed hip system.” Clinical Biomechanics, Vol. 29(2), pp. 161–169, 2014.
[130] Hitchon P.W., Brenton M.D., Coppes J.K., From A.M. and Torner J.C. “Factors Affecting the Pullout Strength of Self-Drilling and Self-Tapping Anterior Cervical Screws.” Spine, Vel. 28, pp. 9-13, 2003.
[131] Choi K. and Goldstein S.A. “A comparison of the fatigue behavior of human trabecular and cortical bone tissue.” Journal of Biomechanics, Vol. 25(12), pp. 1371–1381, 1992.
[132] Rho J.Y., Ashman R.B. and Turner C.H. “Young′s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements.” Journal of Biomechanics, Vol. 26(2), pp. 111–119, 1993.
[133] Rho J.Y., Tsui T.Y. and Pharr G.M. “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation.” Biomaterials, Vol. 18(20), pp. 1325–1330, 1997.
[134] Charles H.T., Jae R., Yuichi T., Ting Y.T. and George M.P. “The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques.” Journal of Biomechanics, Vol. 32(4), pp. 437–441, 1999.
[135] Harun H.B., Elise F.M., Glen L.N., Grayson E.M., Eric K.W. and Tony M.K. “Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.” Journal of Biomechanics, Vol. 37(1), pp. 27–35, 2004.
指導教授 曾清秀、林上智 審核日期 2015-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明