博碩士論文 983403026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.232.133.141
姓名 李侃融(Kan-rong Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 質子傳輸型固態氧化物燃料電池關鍵電解質材料之研究
(Key Proton-conducting Electrolytes for H+-SOFC Applications)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 固態氧化物燃料電池為一種高轉換效率、無汙染、可使用碳氫燃料的發電裝置。且由於其工作溫度高達600-1000 ℃,所以無需貴重金屬當作觸媒。傳統固態氧化物燃料電池為氧離子傳導型固態氧化物燃料電池,因其工作溫度高達1000 ℃,故產生熱膨脹係數匹配、元件需耐超高溫等問題。新型固態氧化物燃料電池為氫質子傳導型固態氧化物燃料電池,其工作溫度可降低至600-800 ℃,對降低成本、延長電池壽命有明顯幫助,故近期受到相當矚目。然而,對於氫質子傳導型固態氧化物燃料電池發展的關鍵問題是找到一個合適的質子導電氧化物電解質。本研究使用溶膠-凝膠法製備鋇鈰鋯釔氧化物並探討其材料與電化學特性。
本研究首先探討鈰/鋯比例對Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ (0.0≤x≤0.8) 之影響。結果顯示經過高溫1600 ℃燒結後試片呈現單一鈣鈦礦晶體結構、無雜相、緻密度高的試片,適合應用於氫質子傳導型固態氧化物燃料電池之電解質。隨著鋯比例增加會導致晶格收縮,且在1600 ℃燒結時抑制晶粒成長。Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ (0.0≤x≤0.8)之導電率隨著鋯比例增加而下降,在800 ℃,導電率最高為為未摻雜鋯之Ba0.6Sr0.4Ce0.8Y0.2O3-δ,其導電率高達0.014 S / cm。但X光繞射和拉曼光譜結果顯示,Ba0.6Sr0.4Ce0.8Y0.2O3-δ對二氧化碳之化學穩定性不佳。可藉由少量摻雜鈰提高其化學穩定性。
其次,探討鋇/鍶比例對Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ (0.0≤x≤1.0) 之影響。結果顯示經1600 ℃燒結的Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ試片在二氧化碳環境下表現出優異的化學穩定性。然而,其微觀結構和導電率對鍶摻雜量相當敏感。藉由鍶摻雜可明顯抑制雜相形成,且促進晶粒成長。在800 ℃,Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ之試片導電率可達0.009 S/cm。推測可藉由鍶摻雜可抑制雜相形成、促進晶粒成長與提高相均勻性。本研究提出,適量的鍶摻雜對Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ之相均勻性等材料特性有明顯幫助,且未來可運用在氫質子傳導型固態氧化物燃料電池之電解質。
接著探討以鉀取代鍶之影響,針對鋇/鉀的比例進行研究,並開發新製程:成分交換法。與傳統溶膠-凝膠相比,利用成分交換法所製備出之Ba1-xKxCe0.6Zr0.2Y0.2O3-δ有更好的燒結性、更高的導電率、相均勻性與對二氧化碳有更好的化學穩定性。利用成分交換法所製備出之Ba0.925K0.075Ce0.6Zr0.2Y0.2O3-δ之試片於800 ℃有最高之導電率約0.0094 S/cm。本研究指出利用成分交換法所製備出之Ba1-xKxCe0.6Zr0.2Y0.2O3-δ試片,未來有機會運用在氫質子傳導型固態氧化物燃料電池之電解質。更重要的是,此成分交換法未來亦可運用在其他類似的材料系統。
最後探討鈰/釔比例對BaZr0.2Ce0.8-xYxO3-δ (x=0-0.4) 之影響,並利用成分交換法製備出品質更優良之BaZr0.2Ce0.8-xYxO3-δ之試片並分析其差異。與傳統溶膠-凝膠相比,利用成分交換法所製備出之BaZr0.2Ce0.8-xYxO3-δ有更好的燒結性、更高的導電率、相均勻性與對二氧化碳有更好的化學穩定性。此外,並將BaZr0.2Ce0.6Y0.2O3-δ製備為白金/電解質/白金之單電池,進行電解質性能分析。與傳統溶膠-凝膠相比,利用成分交換法所製備出之BaZr0.2Ce0.6Y0.2O3-δ試片,其電解質性能有明顯之提升。本研究指出利用成分交換法所製備出之BaZr0.2Ce0.8-xYxO3-δ試片,未來有機會運用在氫質子傳導型固態氧化物燃料電池之電解質。
本研究探討氫質子傳導型固態氧化物燃料電池之電解質材料,針對BaCeO3-δ之基礎材料,藉由元素摻雜提高化學穩定性、導電度與相均勻性等材料特性,並發開新製程:成分交換法。結果顯示:摻雜鋯雖然降低其導電度,但可大幅提升化學穩定性;摻雜鍶可提升其化學穩定性與相均勻性;摻雜鉀可提高導電度,但會造成電解質之孔隙率上升;摻雜釔可提高導電度,但過量摻雜釔會造成晶格嚴重扭曲。利用成分交換法所製備之電解質材料有更好的燒結性、更高的導電率、相均勻性與對二氧化碳有更好的化學穩定性,亦可大幅降低孔隙率與晶格扭曲效應。未來可將成分交換法運用在其他類似的材料系統。
摘要(英) Solid-oxide fuel cells (SOFCs) are electrochemical power-generation systems characterized by high energy conversion efficiency, low environmental impact, excellent fuel flexibility, and ability to use non-precious-metal catalysts. Typical SOFCs, which operate at a temperature of approximately 1000 ℃, are based on oxygen-ion-conducting electrolytes. Recently, SOFCs based on proton-conducting electrolytes (H+-SOFC) have attracted considerable attention due to their relatively low operation temperature (400-800 ℃) that facilitates the selection of the sealing and interconnection materials, control of the interactions between the electrode/electrolyte, and lowering of the thermal expansion mismatch between the cell components. Moreover, lowering the operation temperature also reduces the capital costs and prolongs cell lifetime. The key issue for H+-SOFC development is finding a suitable proton-conducting oxide electrolyte.
In this study, Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ (x=0-0.8) proton-conducting oxides are prepared using a sol-gel complexing process. The effects of the Ce/Zr ratio on various material properties are systematically investigated. The sintered samples show a perovskite crystal structure without impurity phases and have a rather compact interior, making them suitable for use as a fuel cell electrolyte. Increasing the Zr content in the oxides causes lattice constriction and suppresses grain growth during sintering at 1600 ℃. The ionic conductivity of the oxides increases with increasing Ce/Zr ratio. At 800 ℃, Ba0.6Sr0.4Ce0.8Y0.2O3-δ has a conductivity of as high as 0.014 S/cm. However, X-ray diffraction and Raman spectroscopy evaluations show that this oxide cannot withstand a CO2 atmosphere. A suitable substitution of Ce with Zr in the structure significantly improves the chemical stability of the oxide without significantly degrading conductivity.
Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ (0.0 ≤ x ≤ 1.0) proton-conducting oxides have been prepared using a citrate-EDTA complexing sol-gel method. In this study, the relationship between the Sr doping content and microstructure, chemical stability against CO2, and conductivity of the sintered Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ pellets are systematically investigated using XRD, SEM, micro-Raman spectroscopy, and dc two-probe measurements. All sintered Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ oxides exhibit excellent chemical stability after being exposed to the CO2 ambient at 600 ℃ for a long duration; nevertheless, their microstructures and conductivities are very sensitive to the Sr doping amount. The Sr incorporation is found to apparently suppress the formation of CeO2-like second phase, and enhance the grain growth in sintered oxides. Among all sintered samples, the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ pellet has the highest conductivity, 0.009 S/cm at 800 ℃. This result can be attributed to the competition between the elimination of CeO2- or (Zr,Ce,Y)O2-like phase inhomogeneity and enhanced grain growth in sintered oxides, both of which adversely influence the ionic conductivity. This work demonstrates that Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ would be a promising electrolyte for H+-SOFC applications if the Sr doping is well controlled.
This study reports the synthesis of proton-conducting Ba1-xKxCe0.6Zr0.2Y0.2O3-δ (x=0.025-0.075) ceramics by using a combination of citrate-EDTA complexing sol-gel process and the composition-exchange method. Compared to the sintered oxides of similar composition prepared from conventional sol-gel powders, Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides synthesized by sol-gel combined with the composition-exchange method are found to exhibit improved sinterability, higher conductivity, more homogeneous phase, and excellent chemical stability against CO2. Among all sintered oxides in this study, the Ba0.925K0.075Ce0.6Zr0.2Y0.2O3-δ pellet fabricated by this new method has the highest conductivity, 0.0094 S/cm at 800 ℃, which is higher than those pressed from conventional sol-gel powders in the K doping range of 0-15%. Based on the experimental results, we discuss the mechanism for improvement in these properties in terms of calcined particle characteristics. This work demonstrates that Ba1-xKxCe0.6Zr0.2Y0.2O3-δ oxides synthesized by sol-gel combined with the composition-exchange method would be a promising electrolyte for H+-SOFC applications. More importantly, this new fabrication approach may be applied to other similar material systems, such as Sr-doped Ba(Ce,Zr)O3 ceramics.
This study reports the synthesis of proton-conducting BaZr0.2Ce0.8-xYxO3-δ (x = 0-0.4) oxides by using a combination of citrate-EDTA complexing sol-gel process and composition-exchange method. Compared to those oxides prepared from conventional sol-gel powders, the sintered BaZr0.2Ce0.8-xYxO3-δ pellets synthesized by sol-gel combined with composition-exchange method are found to exhibit improved sinterability, a higher relative density, higher conduction, and excellent thermodynamic stability against CO2. Moreover, the Pt/electrolyte/Pt single cell using such a BaZr0.2Ce0.6Y0.2O3-δ electrolyte shows an obviously higher maximum powder density in the hydrogen-air fuel cell experiments. Based on the experimental results, we discuss the improvement mechanism in terms of calcined particle characteristics. This work demonstrates that the BaZr0.2Ce0.8-xYxO3-δ oxides synthesized by sol-gel combined with composition-exchange method would be a promising electrolyte for the use in H+-SOFC applications. More importantly, this new fabrication approach could be applied to other similar ABO3-perovskite material systems.
關鍵字(中) ★ 固態氧化物燃料電池
★ 電解質
★ 溶膠-凝膠法
關鍵字(英) ★ Solid oxide fuel cells
★ Electrolyte
★ Sol-gel
論文目次 List of Figures……………………………………………………………………………. .IX
List of Tables XIII
Chapter 1 Introduction 1
1.1 Fuel Cells 1
1.2 Polarization Curve 2
1.3 Solid Oxide Fuel Cells 2
1.3.1 Principle of SOFCs 3
1.3.2 Structure of SOFCs 4
1.4 Materials for SOFC Electrolytes 7
1.4.1 Fluorite 7
1.4.2 Perovskite 7
1.6 Mechanism of Proton Conduction in a Perovskite Structure 9
1.7 Motivation 9
Chapter 2 Experimental Procedures 11
2.1 BaCeO3-based Powder 11
2.2 Composition-exchange Method 11
2.3 BaCeO3-based Pellets 11
2.4 Material Characterization 11
2.4.1 X-ray Diffraction (XRD) 11
2.4.2 Field Emission Measurements (SEM) 12
2.4.3 Relative Density and Hardness Test 12
2.4.4 Raman Spectrometer Analysis 12
2.5 Electrical Analysis 12
2.6 Chemical Stability 12
2.7 Performance of Electrolyte 13
Chapter 3 The Effect of Ce/Zr Ratio for Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ 14
3.1 Results and Discussion 14
3.2 Summary and Conclusions 17
Chapter 4 The Effect of Ba/Sr Ratio for Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ 18
4.1 Results and Discussion 18
4.2 Summary and Conclusions 21
Chapter 5 The Effect of Ba/K Ratio for Ba1-xKxCe0.6Zr0.2Y0.2O3-δ and Sol-gel Combined with Composition-exchange 22
5.1 Results and Discussion 22
5.2 Summary and Conclusions 26
Chapter 6 The Effect of Ce/Y Ratio for BaZr0.2Ce0.8-xYxO3-δ and Sol-gel Combined with Composition-exchange Method 28
6.1 Results and Discussion 28
6.2 Summary and Conclusions 31
Chapter 7 Summary and Conclusions 33
References 35
Figures………………………………………………………………………………………..46
Tables…………………………………………………………………………………………84
參考文獻 [1.1] W.R. Grove, “On Voltaic Series and the Combination of Gases by Platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, (1839).
[1.2] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd edition, John Wiely & Sons Inc., NY, USA, (2003).
[1.3] S.M. Haile, “Fuel Cell Materials and Components”, Acta Materialia, Vol. 51, 2003, pp. 5981-6000, (2003).
[1.4] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 1nd edition, John Wiely & Sons Inc., England, (2000).
[1.5] A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications”, Journal of Power Sources, Vol. 127, pp. 273-283, (2004).
[1.6] A.L. Lee, R. F. Zabransky, and W. J. Huber, “Internal Reforming Development for Solid Oxide Fuel Cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, (1990).
[1.7] L.M. Zhang and W.S. Yang, “Direct Ammonia Solid Oxide Fuel Cell Based on Thin Proton-conducting Electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, (2008).
[1.8] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E.D. Bartolomeo, “Influence of the Ratio Between Ni and BaCe0.9Y0.1O3-δ on Microstructural and Electrical Properties of Proton Conducting Ni-BaCe0.9Y0.1O3-δ Anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, (2011).
[1.9] B.H. Rainwater, M.F. Liu, and M.L. Liu, “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, (2012).
[1.10] L. Bi, E. Fabbri, and E. Traversa, “Effect of Anode Functional Layer on the Performance of Proton-conducting Solid Oxide Fuel Cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, (2012).
[1.11] K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte Membrane for Proton Conducting Solid Oxide Fuel Cells”, Electrochemistry Communications, Vol. 11, 1618-1622, (2009).
[1.12] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC Single Cells with Anode Active Layer via Tape Casting and Co-firing”, International Journal of Hydrogen energy, Vol. 33, pp. 2826-2833, (2008).
[1.13] Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, and S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for Prospective Application as Cathode for IT-SOFCs or Oxygen Permeating Membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[1.14] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide Ion Diffusion in Perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A Molecular Dynamics Study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[1.15] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Electrochemical Performance of Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathodes Prepared via Electroless Deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[1.16] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, (2006).
[1.17] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Potential Cathode for Ananode-supported Proton-conducting Solid-oxide Fuel Cell”, Journal of Power Sources, Vol. 180, pp. 15-22, (2008).
[1.18] W. Zhou, R. Ran, R. Cai, Z.P. Shao,W.Q. Jin, and N. P. Xu, “Effect of a Reducing Agent for Silver on the Electrochemical Activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrode Prepared by Electroless Deposition Technique”, Journal of Power Sources, Vol. 186, pp. 244-251, (2009).
[1.19] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, and Z.F. Zhou, “A Novel Cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-α Composite Cathode for Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 204, pp. 89-93, (2012).
[1.20] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, and GY Meng, “Intermediate-to-low Temperature Protonic Ceramic Membrane Fuel Cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δ Composite Cathode”, Journal of Power Sources, Vol. 186, pp. 58-61, (2009).
[1.21] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, and XQ Liu, “Cobalt-free Oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for Proton-conducting Solid Oxide Fuel Cell Cathode”, International Journal of Hydrogen Energy, Vol. 35, pp. 3769-3774, (2010).
[1.22] J.W. Wu and X.B. Liu, “Recent Development of SOFC Metallic Interconnect”, Journal of Materials Science & Technology, Vol. 26, pp. 293-305, (2010).
[1.23] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, and K. Hilpert, “Chromium Vaporization of the Ferritic Steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy”, Journal of Materials Science, Vol. 42, pp. 5778-5784, (2007).
[1.24] Z.G. Yang, G.G. Xia, P. Singh, and J.W. Stevenson, “Electrical Contacts Between Cathodes and Metallic Interconnects in Solid Oxide Fuel Cells”, J. Power Sources, Vol. 155, pp. 246-252, (2006).
[1.25] Y.D. Zhen, S.P. Jiang, S. Zhang, and V. Tan, “Interaction Between Metallic Interconnect and Constituent Oxides of (La, Sr)MnO3 Coating of Solid Oxide Fuel Cells”, Journal of the European Ceramic Society, Vol. 26, pp. 3253-3264, (2006).
[1.26] B.C.H. Steele and A. Heinzel, “Materials for Fuel-cell Technologies”, Nature, Vol. 414, pp. 345-352, (2001).
[1.27] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, and H. Yokokawa, “Effects of Silicon Concentration in SOFC Alloy Interconnects on the Formation of Oxide Scales in Hydrocarbon Fuels”, Journal of Power Sources, Vol. 157, pp. 681-687, (2006).
[1.28] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, and K.Y. Kim, “Effect of Reactive Elements on Oxidation Behaviour of Fe-22Cr-0.5Mn Ferritic Stainless Steel for a Solid Oxide Fuel Cell Interconnect”, Journal of Power Sources, Vol. 178, pp. 1-8, (2008).
[1.29] Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selection and Evaluation of Heat-resistant Alloys for SOFC Interconnect Applications”, Journal of The Electrochemical Society, Vol. 150, pp. A1188-A1201, (2003).
[1.30] J. Li, J. Pu, J.Z. Xiao, and X.L. Qian, “Oxidation of Haynes 230 alloy in Reduced Temperature Solid Oxide Fuel Cell Environments”, Journal of Power Sources, Vol. 139, pp. 182-187, (2005).
[1.31] J. Pu, J. Li, B. Hua, and G.Y. Xie, “Oxidation Kinetics and Phase Evolution of a Fe-16Cr Alloy in Simulated SOFC Cathode Atmosphere”, Journal of Power Sources, Vol. 158, pp. 354-360, (2006).
[1.32] S.H. Kim, J.Y. Huh, J.H. Jun, J.H. Jun, and J. Favergeon, “Thin Elemental Coatings of Yttrium, Cobalt, and Yttrium/cobalt on Ferritic Stainless Steel for SOFC Interconnect Applications”, Current Applied Physics, Vol. 10, pp. S86-S90, (2010).
[1.33] Y. Liu and D.Y. Chen, “Protective Coatings for Cr2O3-forming Interconnects of Solid Oxide Fuel Cells”, International Journal of Hydrogen Energy, Vol. 34, pp. 9220-9226, (2009).
[1.34] H. Inaba and H. Tagawa, “Ceria-based Solid Electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, (1996).
[1.35] S.M. Haile, G. Staneff, and K.H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites” Journal of Materials Science, Vol. 36, pp. 1149-1160, (2001).
[1.36] A. Arabacı and M.F. Öksüzömer, “Preparation and Characterization of 10 mol% Gd Doped CeO2 (GDC) Electrolyte for SOFC Applications”, Ceramics International, Vol. 38, pp. 6509-6515, (2012).
[1.37] L.P. Li and J.C. Nino, “Ionic Conductivity Across the Disorder-order Phase Transition in the SmO1.5-CeO2 System”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, (2012).
[1.38] X.C. Liu, R.Z. Hong, and C.S. Tian, “Tolerance Factor and the Stability Discussion of ABO3-type Ilmenite”, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 323-327, (2009).
[1.39] T. Takahashi and H. Iwahara, “Ionic Conduction in Perovskite-type Oxide Solid Solution and Its Application to the Solid Electrolyte Fuel Cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[1.40] T. Schober, F. Krug, and W. Schilling, “Criteria for the Application of High Temperature Proton Conductors in SOFCs”, Solid State Ionics, Vol. 97, pp. 369-373, (1997).
[1.41] T. Norby and Y. Larring, “Concentration and Transport of Protons in Oxides”, Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-599, (1997).
[1.42] K.D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, (2003).
[1.43] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides Based on BaCeO3”, Journal of The Electrochemical Society, Vol. 135, pp. 529-533, (1988).
[1.44] H. Iwahara, H. Uchida, and K. Morimoto, “High Temperature Solid Electrolyte Fuel Cells Using Perovskite Type Oxide Based on BaCeO3”, Journal of The Electrochemical Society, Vol. 137, pp. 462-465, (1990).
[1.45] K.D. Kreuer, “Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-type Oxides”, Solid State Ionics, Vol. 125, pp. 285-302, (1999).
[1.46] C.D. Savaniu, J. Canales-Vazquez, and J.T.S. Irvine, “Investigation of Pproton Conducting BaZr0.9Y0.1O2.95:BaCe0.9Y0.1O2.95 Core-shell Structures”, Journal of Materials Chemistry, Vol. 15, pp. 598-604, (2005).
[1.47] C.W. Tanner and A.V. Virkar, “Instability of BaCeO3 in H2O-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 143, pp.1386-1389, (1996).
[1.48] S. Gopalan and A.V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells”, Journal of The Electrochemical Society, Vol. 140, pp. 1060-1065, (1993).
[1.49] F.L. Chen, O.T. Sørensen, G.Y. Meng, and D.K. Peng, “Chemical Stability Study of BaCe0.9Nd0.1O3-δ High-temperature Proton-conducting Ceramic”, Journal of Materials Chemistry, Vol. 7, pp. 481-485, (1997).
[1.50] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, and T. Ishihara, “Relation Between Electrical Conductivity and Chemical Stability of BaCeO3-Based Proton Conductors with Different Trivalent Dopants”, Electrochemical and Solid-State Letters, Vol. 10, pp. B77-B80, (2007).
[1.51] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic Conduction in Zr-substituted BaCeO3” Solid State Ionics, Vol. 138, pp. 91-98, (2000).
[1.52] J. Liang, L.L. Mao, L. Li, and W.H. Yuan, “Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ (0≤x≤0.40) Membrane”, Chinese Journal of Chemical Engineering, Vol. 18, pp. 506-510, (2010).
[1.53] S. Ricote, N. Bonanos, A. Manerbino, and W.G. Coors, “Conductivity Study of Dense BaCexZr(0.9-x)Y0.1O(3-δ) Prepared by Solid State Reactive Sintering at 1500 ℃”, International Journal of Hydrogen Energy, Vol. 37, pp. 7954-7961, (2012).
[1.54] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[1.55] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras, “Investigation of the Protonic Conduction in Sm Doped BaCeO3”, Journal of Power Sources, Vol. 181, pp. 207-213, (2008).
[1.56] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras, “Influence of Cu on the Properties of Gadolinium-doped Barium Cerate”, Journal of Power Sources, Vol. 181, pp. 292-296, (2008).
[1.57] A. Radojković, M. Žunić, S.M. Savić, G. Branković, and Z. Branković, “Chemical Stability and Electrical Properties of Nb Doped BaCe0.9Y0.1O3-δ as a High Temperature Proton Conducting Electrolyte for IT-SOFC”, Ceramics International, Vol. 39, pp. 307-313, (2013).
[1.58] P. Pasierb, M. Wierzbicka, S. Komornicki, and M. Rekas, “Electrochemical Impedance Spectroscopy of BaCeO3 Modified by Ti and Y”, Journal of Power Sources, Vol. 194, pp. 31-37, (2009).
[1.59] Y.Z. Wang, A. Chesnaud, E. Bevillon, J.L. Yang, and G. Dezanneau, “Synthesis, Structure and Protonic Conduction of BaSn0.875M0.125O3-δ (M = Sc, Y, In and Gd)”, International Journal of Hydrogen Energy, Vol. 36, pp. 7688-7695, (2011).
[1.60] L.G. Qiu, G.L. Ma, and D.J. Wen, “Ionic Conduction in BaxCe0.8Er0.2O3-α”, Solid State Ionics, Vol. 166, pp. 69-75, (2004).
[1.61] C.T.G. Petit and S.W. Tao, “Structure and Conductivity of Praseodymium and Yttrium Co-doped Barium Cerates”, Solid State Sciences, Vol. 17, pp. 115-121, (2013).
[1.62] M.S. Islam, “Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour”, Journal of Materials Chemistry, Vol. 10, pp.1027-1038, (2000).
[1.63] K.D. Kreuer, “Proton Conductivity: Material and Applications”, Chemistry of Materials, Vol. 8, pp. 610-641, (1996).
[1.64] T. Norby, M. Widerøe, R. Glöckner, and Y. Larring, “Hydrogen in Oxides”, Dalton Transactions, Vol. 19, pp. 3012-3018, (2004).
[3.1] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[3.2] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[3.3] N.H. Perry, S. Kim, and T.O. Mason, “Local Electrical and Dielectric Properties of Nanocrystalline Yttria-stabilized Zirconia”, Journal of Materials Science, Vol. 43, pp. 4684-4692, (2008).
[3.4] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[3.5] H. Iwahara, “Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, Vol. 77, pp. 289-298, (1995).
[3.6] S.L. Gao, X.W. Yang, D.H. Ren, and Q.Z. Shi, “Thermochemical Properties of Complexes of Rare Earth Nitrate with Glycine”, Thermochimica Acta, Vol. 287, pp. 177-182, (1996).
[3.7] R.L. Frost and J.M. Bouzaid, “Raman Spectroscopy of Dawsonite NaAl(CO3)(OH)2”, Journal of Raman Spectroscopy, Vol. 38, pp. 873-879, (2007).
[4.1] Y. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, and P. Wu, “Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, Vol. 196, pp. 4524-4532, (2011).
[4.2] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, and C.L. Tsai, “Thermal Stability of Ba(Zr0.8-xCexY0.2)O2.9 Ceramics in Carbon Dioxide”, Journal of Applied Physics, Vol. 105, p. 103504, (2009).
[4.3] R.O. Fuentes and R.T. Baker, “Synthesis and Properties of Gadolinium-doped Ceria Solid Solutions for IT-SOFC Electrolytes”, International Journal of Hydrogen Energy, Vol. 33, pp. 3480-3484, (2008).
[4.4] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[4.5] J. Lv, L. Wang, D. Lei, H. Guo, and R.V. Kumar, “Sintering, Chemical Stability and Electrical Conductivity of the Perovskite Proton Conductors BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm)”, Journal of Alloys and Compounds, Vol. 467, pp. 376-382, (2009).
[4.6] A.K. Azad and J.T.S. Irvine, “Synthesis, Chemical Stability and Proton Conductivity of the Perovksites Ba(Ce, Zr)1-xScxO3-δ”, Solid State Ionics, Vol. 178, pp. 635-640, (2007).
[4.7] K. Xie, Q.L. Ma, B. Lin, Y.Z. Jiang, J.F. Gao, X.Q. Liu, and G.Y. Meng, “An Ammonia Fuelled SOFC with a BaCe0.9Nd0.1O3-δ Thin Electrolyte Prepared with a Suspension Spray”, Journal of Power Sources, Vol. 170, pp. 38-41, (2007).
[4.8] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[4.9] N.H. Perry, S. Kim, and T.O. Mason, “Local Electrical and Dielectric Properties of Nanocrystalline Yttria-stabilized Zirconia”, Journal of Materials Science, Vol. 43, pp. 4684-4692, (2008).
[4.10] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, and C.C. Huang, “Synthesis and Characterization of Proton-conducting Ba(Zr0.8-xCexY0.2)O2.9 ceramics”, Solid State Ionics, Vol. 181, pp. 1251-1257, (2010).
[4.11] R.Q. Long, Y.P. Huang, and H.L. Wan, “Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of In Situ Confocal Microprobe Raman Spectroscopy”, Journal of Raman Spectroscopy, Vol. 28, pp. 29-32, (1997).
[4.12] B.K. Kim and H.O. Hamaguchi, “Mode Assignments of the Raman Spectrum of Monoclinic Zirconia by Isotopic Exchange Technique”, Physica Status Solidi B, Vol. 203, pp. 557-563, (1997).
[5.1] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, and C.L. Tsai, “Thermal Stability of Ba(Zr0.8-xCexY0.2)O2.9 Ceramics in Carbon Dioxide”, Journal of Applied Physics, Vol. 105, p. 103504, (2009).
[5.2] Y. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, and P. Wu, “Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, Vol. 196, pp. 4524-4532, (2011).
[5.3] J.S. Park, J.K. Lee, and K.S. Hong, “The Effect of Alkali Niobate Addition on the Phase Stability and Dielectric Properties of Pb(Zn1/3Nb2/3)O3 Based Ceramic”, Journal of Applied Physics, Vol. 101, pp. 114101-114107, (2007).
[5.4] X.C. Liu, R.Z. Hong, and C.S. Tian, “Tolerance Factor and the Stability Discussion of ABO3-type Ilmenite”, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 323-327, (2009).
[5.5] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[5.6] K.R. Lee, C.J. Tseng, J.K. Chang, I.M. Hung, J.C. Lin, S.W. Lee, “Strontium Doping Effect on Phase Homogeneity and Conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ Proton-conducting Oxides”, International Journal of Hydrogen Energy, Vol. 38, pp. 11097-11103, (2013).
[5.7] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, and C.C. Huang, “Synthesis and Characterization of Proton-conducting Ba(Zr0.8-xCexY0.2)O2.9 ceramics”, Solid State Ionics, Vol. 181, pp. 1251-1257, (2010).
[5.8] R.Q. Long, Y.P. Huang, and H.L. Wan, “Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of In Situ Confocal Microprobe Raman Spectroscopy”, Journal of Raman Spectroscopy, Vol. 28, pp. 29-32, (1997).
[5.9] B.K. Kim and H.O. Hamaguchi, “Mode Assignments of the Raman Spectrum of Monoclinic Zirconia by Isotopic Exchange Technique”, Physica Status Solidi B, Vol. 203, pp. 557-563, (1997).
[5.10] J. Lv, L. Wang, D. Lei, H. Guo, and R.V. Kumar, “Sintering, Chemical Stability and Electrical Conductivity of the Perovskite Proton Conductors BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm)”, Journal of Alloys and Compounds, Vol. 467, pp. 376-382, (2009).
[5.11] A.K. Azad and J.T.S. Irvine, “Synthesis, Chemical Stability and Proton Conductivity of the Perovksites Ba(Ce, Zr)1-xScxO3-δ”, Solid State Ionics, Vol. 178, pp. 635-640, (2007).
[5.12] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[5.13] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[6.1] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[6.2] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[6.3] K.R. Lee, C.J. Tseng, J.K. Chang, I.M. Hung, J.C. Lin, S.W. Lee, “Strontium Doping Effect on Phase Homogeneity and Conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ Proton-conducting Oxides”, International Journal of Hydrogen Energy, Vol. 38, pp. 11097-11103, (2013).
[6.4] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[6.5] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[6.6] P. Sawant, S. Varma, B.N. Wani, and S.R. Bharadwaj, “Synthesis, Stability and Conductivity of BaCe0.8-xZrxY0.2O3-δ as Electrolyte for Proton Conducting SOFC”, International Journal of Hydrogen Energy, Vol. 37, pp. 3848-3856, (2012).
指導教授 曾重仁、李勝偉(Chung-jen Tseng Sheng-wei Lee) 審核日期 2014-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明