博碩士論文 983403032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.148.106.31
姓名 莊文賢(Wen-hsien Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 腰椎非線性有限元素分析之等效比較方法研究與應用
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 高彎曲度之人工膝關節多軸向動態磨耗試驗機開發
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 人體膝關節之高度彎曲電腦動態實體模型的建立★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 足型與足壓電腦輔助分析系統開發★ 超低溫液態氮生物試片儲存槽的研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在臨床上有許多不同型態的植入物被用於治療各種腰椎的病變,對於評估其使用效果,目前文獻中常用的方法是生物力學實驗與數值模擬,其中有限元素法已廣泛被用於評估植入物對腰椎組織的運動學與力學影響。本研究建立一完整的腰椎有限元素分析平台,包括健康與退化病變的幾何模型。對於文獻中常見的不同控制法,使用健康狀態以及植入單節靜態固定器的退化腰椎模型,比較其分析的結果差異,根據比較的結果而選用效率最佳的控制法,用於研究調整動態混合固定器之剛性,對應於不同椎間盤退化等級的結果,希望了解不同的退化等級應配合的剛性大小,並對此建立一平衡區間之觀念,給予未來植入物設計與臨床手術使用參考。對於計算效率而言,本研究提出的DCM在分析時所花的時間比RCM快十七倍,且與其他控制法的結果沒有明顯差異,所以選擇DCM作為非線性腰椎生物力學分析的控制方法。本研究的結果也顯示,使用動靜態混用固定器確實能保護過渡節椎間盤適度,但由於受到固定器的限制,鄰近節問題仍然存在。本研究提出的妥協區間概念,在保護過渡節椎間盤與鄰近節的補償之間應該取得平衡,且應依照不同的固定器設計與椎間盤的退化等級,在手術植入動靜態混用固定器時選用相對應的動態固定器剛性。
摘要(英) There have been many types of implants used to treat various diseases related to lumbosacral instability and deformity. Prior to their clinical use, the in vivo behaviors of the implants can be evaluated by means of biomechanical experiment and numerical simulation. In the field of lumbosacral biomechanics, the finite-element method has been used to evaluate implant-induced effects on the kinematic and mechanical responses at the fixed and adjacent segments. This study first developed intact and degenerative models of the five-segment lumbosacral column. After validation, the intact model served as the comparison baseline and the degenerative model was instrumented with a transpedicular fixation to calculate the load-controlled method (LCM) and ROM-controlled method (RCM) results. Subsequently, a displacement-controlled method (DCM) was proposed by using the nodal displacements of the intact model to guide the vertebral motion of the instrumented model. By using the most efficient controlled method, the current study aimed to investigate the biomechanical effects of fixator stiffness and disc degeneration on the transition and adjacent segments. The degeneration grade of the discs and cord stiffness of the dynamic fixator were varied to investigate the trade-off of the junctional problem at the adjacent segments and motion preservation at the transition segments. The findings of the current study are to provide insight into the device- and surgery-related factors associated with better outcomes of the hybrid fixation. For computational efficiency, the calculation time of the DCM model was seventeen times faster than that of the RCM models. The comparable results and efficient calculation make the DCM the improved strategy for executing the lumbosacral nonlinear analysis. This study also showed that the hybrid fixator can serve as both a motion-preserver and a load-shield for the transition segment. However, the kinematic and mechanical constraints due to the hybrid fixation were inevitably compensated to the adjacent segments. Consequently, the hybrid fixator protected the transition segment but potentially deteriorated the adjacent segments. This study presented the trade-off concept that the protection of the transition segment and the deterioration of the adjacent segments should be balanced. The trade-off stiffness of the flexible cord provides improved rigidity and flexibility of the hybrid fixation and depends on both fixator design and disc degeneration.
關鍵字(中) ★ 腰椎
★ 動態固定器
★ 有限元素分析
關鍵字(英)
論文目次 中文摘要 i
English Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
一、緒論 1
1-1  研究背景 1
1-2  腰椎解剖、病理與生物力學 2
1-2-1 肌肉與韌帶 4
1-2-2 前方椎體 7
1-2-3 後方骨元件 9
1-2-4 椎間盤 11
1-3  腰椎動靜態固定器介紹 15
1-3-1 高強度靜態固定器 20
1-3-2 具橈性連接桿動態固定器 21
1-3-3 具關節性連接桿動態固定器 22
1-3-4 具關節性螺絲頭動態固定器 24
1-3-5 動靜態混用型固定器 25
1-4  本論文架構 28
二、文獻回顧 29
2-1  腰椎退化等級 29
2-2  鄰近節椎間盤問題 33
2-3 動態固定器之臨床結果 37
2-3-1 Isobar動態固定器的臨床結果 38
2-3-2 Cosmic動態固定器的臨床結果 39
2-3-3 Dynesys動態固定器的臨床結果 40
2-4  動態固定器之體外測試 43
2-4-1 Isobar TTL動態固定器的體外測試 45
2-4-2 Cosmic動態固定器的體外測試 46
2-4-3 Dynesys動態固定器的體外測試 47
2-5  動態固定器之有限元素分析 49
2-5-1 Isobar動態固定器的有限元素分析 50
2-5-2 Cosmic動態固定器的有限元素分析 51
2-5-3 Dynesys動態固定器的有限元素分析 51
三、研究內容與方法 55
3-1  腰椎有限元素模型的建立 55
3-1-1 幾何模型建立 57
3-1-2 零件材質設定 60
3-1-3 零件介面設定 61
3-1-4 網格參數設定 62
3-1-5 肌肉群與韌帶系統模擬 63
3-1-5 有限元素模型驗證 65
3-2  退化椎間盤模擬 66
3-3  動靜態固定器模型建立與模擬 68
3-3-1 靜態固定器 69
3-3-2 動態固定器 70
3-4  腰椎有限元素分析控制法比較與改良 72
3-5  動態固定器剛性探討 76
3-6  結果參數選擇 77
四、研究結果 80
4-1  腰椎有限元素模型建立與驗證結果 80
4-2  退化椎間盤建立結果 82
4-3  三種腰椎分析控制法比較結果 87
4-4  動態固定器剛性探討模擬結果 91
五、討論 94
5-1  有限元素模型的基本假設與驗證 95
5-1-1 幾何與材質的假設與限制 95
5-1-2 腰椎周圍肌肉群的假設與限制 95
5-1-3 負載條件的探討 96
5-1-4 退化椎間盤的假設與限制 96
5-1-5 腰椎後方固定器的假設與限制 97
5-1-6 模型驗證討論 97
5-2  退化病變的腰椎模型與鄰近節問題討論 98
5-3  三種分析控制法的比較結果討論 99
5-4  動態固定器的剛性調整影響結果討論 103
5-5  本研究結果的臨床意義 104
六、結論與未來展望 106
6-1  結論 106
6-2  未來展望 107
參考文獻 108
參考文獻 [1] Carola R, Harley JP, Noback CR: Human anatomy and physiology; 1992.
[2] Healthhype [http://www.healthhype.com/]
[3] chang Yt: Low Back Pain with With Whole-Body Vibration and Manual Materials Handling. Taipei Medical University; 2008.
[4] 張俊詳: 肌肉骨骼系統解剖學:構造與功能; 2006.
[5] Jemmett RS, MacDonald DA, Agur AMR: Anatomical relationships between selected segmental muscles of the lumbar spine in the context of multi-planar segmental motion: a preliminary investigation. Manual Therapy 2004, 9(4):203-210.
[6] P.Schnuerer A, Gallego PAJ, Manuel MDC: Anatomy of the Spine & Related Structures
[7] Chen CS: Biomechanical analysis of the lumbar spinal fusion. National Yang-Ming University; 2001.
[8] Teng JM: Finite Element Analysis in Cervical Interbody Fusion Cage Subsidence. National Yang-Ming University; 2004.
[9] Prohealthsys [http://www. Prohealthsys.com]
[10] AB J, AE T, RS S: Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System; 2000.
[11] Stokes IAF: Mechanical function of facet joints in the lumbar spine. Clinical Biomechanics 1988, 3(2):101-105.
[12] Yang KH, King AI: Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 1984, 9(6):557-565.
[13] Cyron BM, Hutton WC, Troup JD: Spondylolytic fractures. The Journal of bone and joint surgery British volume 1976, 58-B(4):462-466.
[14] 洪一智: Finite Element Analysis of the Lumbar Interspinous Process Distractor. 國立中央大學; 2008.
[15] Zhong ZC: Biomechanical Evaluation and Design of the Interbody Fusion Cage in Lumbar Spine National Yang-Ming University; 2004.
[16] Frymoyer JW, Pope MH, Clements JH, Wilder DG, MacPherson B, Ashikaga T: Risk factors in low-back pain. An epidemiological survey. The Journal of bone and joint surgery American volume 1983, 65(2):213-218.
[17] spineuniverse [http://www.spineuniverse.com]
[18] Elfering A, Semmer N, Birkhofer D, Zanetti M, Hodler J, Boos N: Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine 2002, 27(2):125-134.
[19] Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C: Modic changes and their associations with clinical findings. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2006, 15(9):1312-1319.
[20] Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM: The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25(23):3036-3044.
[21] Iatridis JC, Setton LA, Weidenbaum M, Mow VC: Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 1997, 15(2):318-322.
[22] Frobin W, Brinckmann P, Kramer M, Hartwig E: Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. European radiology 2001, 11(2):263-269.
[23] Ruberte LM, Natarajan RN, Andersson GB: Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. Journal of biomechanics 2009, 42(3):341-348.
[24] Kirkaldy-Willis WH, Farfan HF: Instability of the lumbar spine. Clinical orthopaedics and related research 1982(165):110-123.
[25] Kettler A, Rohlmann F, Ring C, Mack C, Wilke HJ: Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2011, 20(4):578-584.
[26] Frymoyer JW, Pope MH, Costanza MC, Rosen JC, Goggin JE, Wilder DG: Epidemiologic studies of low-back pain. Spine 1980, 5(5):419-423.
[27] spine-health [http://www.spine-health.com]
[28] Chen CS, Chen WJ, Cheng CK, Jao SH, Chueh SC, Wang CC: Failure analysis of broken pedicle screws on spinal instrumentation. Medical engineering & physics 2005, 27(6):487-496.
[29] Graf H: Lumbar instability: Surgical treatment without fusion. Rachis 1992, 412:123-37.
[30] Zimmer [http://www.zimmer.com]
[31] Barrey CY, Ponnappan RK, Song J, Vaccaro AR: Biomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review. SAS Journal 2008, 2(4):159-170.
[32] Barrey CY: Dynamic instrumentation for fusion with Isobar TTL™: biomechanical and clinical aspects. ArgoSpine News & Journal 2010, 22(2):62-66.
[33] Bono CM, Kadaba M, Vaccaro AR: Posterior Pedicle Fixation-based Dynamic Stabilization Devices for the Treatment of Degenerative Diseases of the Lumbar Spine. J Spinal Disord Tech 2009, 22(5):376-383 310.1097/BSD.1090b1013e31817c36489.
[34] Kuslich SD, Ulstrom CL, Michael CJ: The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. The Orthopedic clinics of North America 1991, 22(2):181-187.
[35] Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N: The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine 1995, 20(17):1878-1883.
[36] McNally DS, Shackleford IM, Goodship AE, Mulholland RC: In vivo stress measurement can predict pain on discography. Spine 1996, 21(22):2580-2587.
[37] Luoma K, Riihimaki H, Raininko R, Luukkonen R, Lamminen A, Viikari-Juntura E: Lumbar disc degeneration in relation to occupation. Scandinavian journal of work, environment & health 1998, 24(5):358-366.
[38] Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A: Low back pain in relation to lumbar disc degeneration. Spine 2000, 25(4):487-492.
[39] Kelsey JL, Githens PB, O’Conner T, Weil U, Calogero JA, Holford TR, White AA, 3rd, Walter SD, Ostfeld AM, Southwick WO: Acute prolapsed lumbar intervertebral disc. An epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine 1984, 9(6):608-613.
[40] Heliovaara M: Occupation and risk of herniated lumbar intervertebral disc or sciatica leading to hospitalization. Journal of chronic diseases 1987, 40(3):259-264.
[41] Mundt DJ, Kelsey JL, Golden AL, Pastides H, Berg AT, Sklar J, Hosea T, Panjabi MM: An epidemiologic study of non-occupational lifting as a risk factor for herniated lumbar intervertebral disc. The Northeast Collaborative Group on Low Back Pain. Spine 1993, 18(5):595-602.
[42] Battie MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K: 1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine 1995, 20(24):2601-2612.
[43] Benneker LM, Heini PF, Anderson SE, Alini M, Ito K: Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2005, 14(1):27-35.
[44] Roberts S, Menage J, Eisenstein SM: The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 1993, 11(5):747-757.
[45] Roberts S, Urban JP, Evans H, Eisenstein SM: Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 1996, 21(4):415-420.
[46] Macnab I: The traction spur. An indicator of segmental instability. The Journal of bone and joint surgery American volume 1971, 53(4):663-670.
[47] Panagiotacopulos ND, Pope MH, Krag MH, Block R: Water content in human intervertebral discs. Part I. Measurement by magnetic resonance imaging. Spine 1987, 12(9):912-917.
[48] Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A: Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 1994, 19(12):1371-1380.
[49] Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP: The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine 1996, 21(22):2558-2569.
[50] Krismer M, Haid C, Behensky H, Kapfinger P, Landauer F, Rachbauer F: Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration. Spine 2000, 25(16):2020-2027.
[51] Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM: The relationship between disc degeneration and flexibility of the lumbar spine. The spine journal : official journal of the North American Spine Society 2001, 1(1):47-56.
[52] Natarajan RN, Williams JR, Andersson GB: Modeling changes in intervertebral disc mechanics with degeneration. The Journal of bone and joint surgery American volume 2006, 88 Suppl 2:36-40.
[53] Goto K, Tajima N, Chosa E, Totoribe K, Kuroki H, Arizumi Y, Arai T: Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association 2002, 7(2):243-246.
[54] Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G: Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of biomechanics 2006, 39(13):2484-2490.
[55] Waris E, Eskelin M, Hermunen H, Kiviluoto O, Paajanen H: Disc degeneration in low back pain: a 17-year follow-up study using magnetic resonance imaging. Spine 2007, 32(6):681-684.
[56] Lee CK: Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988, 13(3):375-377.
[57] Schlegel JD, Smith JA, Schleusener RL: Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 1996, 21(8):970-981.
[58] Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, Griffith SL: Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 2000, 25(20):2656-2662.
[59] Chou WY, Hsu CJ, Chang WN, Wong CY: Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Archives of orthopaedic and trauma surgery 2002, 122(1):39-43.
[60] Auerbach JD, Balderston RA: Lumbar Instability Adjacent to a Previous Fusion. Seminars in Spine Surgery 2005, 17(4):267-276.
[61] Wiltse LL, Radecki SE, Biel HM, DiMartino PP, Oas RA, Farjalla G, Ravessoud FA, Wohletz C: Comparative study of the incidence and severity of degenerative change in the transition zones after instrumented versus noninstrumented fusions of the lumbar spine. Journal of spinal disorders 1999, 12(1):27-33.
[62] Park JY, Chin DK, Cho YE: Accelerated L5-S1 Segment Degeneration after Spinal Fusion on and above L4-5 : Minimum 4-Year Follow-Up Results. Journal of Korean Neurosurgical Society 2009, 45(2):81-84.
[63] Cho KS, Kang SG, Yoo DS, Huh PW, Kim DS, Lee SB: Risk factors and surgical treatment for symptomatic adjacent segment degeneration after lumbar spine fusion. Journal of Korean Neurosurgical Society 2009, 46(5):425-430.
[64] Phillips FM, Reuben J, Wetzel FT: Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. The Journal of bone and joint surgery British volume 2002, 84(2):289-294.
[65] Lee CK, Langrana NA: Lumbosacral spinal fusion. A biomechanical study. Spine 1984, 9(6):574-581.
[66] Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC: Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 2003, 28(20):S110-117.
[67] Weinhoffer SL, Guyer RD, Herbert M, Griffith SL: Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine 1995, 20(5):526-531.
[68] Rohlmann A, Calisse J, Bergmann G, Weber U: Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine 1999, 24(12):1192-1195; discussion 1195-1196.
[69] Chen CS, Cheng CK, Liu CL, Lo WH: Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical engineering & physics 2001, 23(7):483-491.
[70] Chen CS, Cheng CK, Liu CL: A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech 2002, 15(1):53-63.
[71] Chen CS, Feng CK, Cheng CK, Tzeng MJ, Liu CL, Chen WJ: Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine. J Spinal Disord Tech 2005, 18(1):58-65.
[72] JJ Y, R B, PC M, An HS: Motion Preservation Surgery of the Spine. 3rd ed; 2008.
[73] Champain S, Mazel C, Mitulescu A, Skalli W: Quantitative analysis in outcome assessment of instrumented lumbosacral arthrodesis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2007, 16(8):1241-1249.
[74] Hudson WRS, Gee JE, Billys JB, Castellvi AE: Hybrid dynamic stabilization with posterior spinal fusion in the lumbar spine. SAS Journal 2011, 5(2):36-43.
[75] Kaner T, Sasani M, Oktenoglu T, Aydin AL, Ozer AF: Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic “semi-rigid” posterior system. SAS Journal 2010, 4(4):99-106.
[76] Stoffel M, Behr M, Reinke A, Stuer C, Ringel F, Meyer B: Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation. Acta neurochirurgica 2010, 152(5):835-843.
[77] Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG: Adjacent segment degeneration in the lumbar spine. The Journal of bone and joint surgery American volume 2004, 86-A(7):1497-1503.
[78] Freudiger S, Dubois G, Lorrain M: Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Archives of orthopaedic and trauma surgery 1999, 119(3-4):127-132.
[79] Stoll TM, Dubois G, Schwarzenbach O: The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2002, 11 Suppl 2:S170-178.
[80] Grob D, Benini A, Junge A, Mannion AF: Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 2005, 30(3):324-331.
[81] Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C: The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine 2005, 30(5):E109-114.
[82] Schnake KJ, Schaeren S, Jeanneret B: Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 2006, 31(4):442-449.
[83] Beastall J, Karadimas E, Siddiqui M, Nicol M, Hughes J, Smith F, Wardlaw D: The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine 2007, 32(6):685-690.
[84] Barrey CY: Pedicle screw-based dynamic stabilization devices for the lumbar spine. ArgoSpine News & Journal 2009, 21(2):78-84.
[85] Skalli W, Champain S, Mosnier T: Spine Biomechanics in Lumbar and Lumbo-Sacral Fusion Alternatives. Elsevier Masson EDS 2007:8-18.
[86] Bono CM, Kadaba M, Vaccaro AR: Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech 2009, 22(5):376-383.
[87] Duncan RL, Turner CH: Mechanotransduction and the functional response of bone to mechanical strain. Calcified tissue international 1995, 57(5):344-358.
[88] Cheng BC, Bellotte JB, Yu A, Swidarski K, Whiting DM: Historical overview and rationale for dynamic fusion. ArgoSpine News & Journal 2010, 22(2):53-56.
[89] Sangiorgio SN, Sheikh H, Borkowski SL, Khoo L, Warren CR, Ebramzadeh E: Comparison of three posterior dynamic stabilization devices. Spine 2011, 36(19):E1251-1258.
[90] Schmoelz W, Onder U, Martin A, von Strempel A: Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2009, 18(10):1478-1485.
[91] Bozkus H, Senoglu M, Baek S, Sawa AG, Ozer AF, Sonntag VK, Crawford NR: Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. Journal of neurosurgery Spine 2010, 12(2):183-189.
[92] Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ: Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 2003, 16(4):418-423.
[93] Strube P, Tohtz S, Hoff E, Gross C, Perka C, Putzier M: Dynamic stabilization adjacent to single-level fusion: part I. Biomechanical effects on lumbar spinal motion. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2010, 19(12):2171-2180.
[94] Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR: Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. European Spine Journal 2006, 15(6):913-922.
[95] Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR: The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine 2008, 33(1):19-26.
[96] Cheng BC, Gordon J, Cheng J, Welch WC: Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine 2007, 32(23):2551-2557.
[97] Castellvi AE, Huang H, Vestgaarden T, Saigal S, Clabeaux DH, Pienkowski D: Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A Finite Element Analysis. SAS Journal 2007, 1(2):74-81.
[98] Goel VK, Konz RJ, Chang HT, Grosland NM, Grobler LJ, Chesmel KD: Hinged-Dynamic Posterior Device Permits Greater Loads on the Graft and Similar Stability as Compared with Its Equivalent Rigid Device: A Three-Dimensional Finite Element Assessment. JPO: Journal of Prosthetics and Orthotics 2001, 13(1):17-20.
[99] Zander T, Rohlmann A, Burra NK, Bergmann G: Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech (Bristol, Avon) 2006, 21(8):767-774.
[100] Rohlmann A, Nabil Boustani H, Bergmann G, Zander T: Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. Journal of biomechanics 2010, 43(15):2963-2969.
[101] Moumene M, Harms J: Is Posterior Dynamic Stabilization an Option to Avoid Adjacent Segment Decompensation? 2010:207-211.
[102] Liu CL, ZC, Shih SL, Hung C, Lee YE, Chen CS: Influence of Dynesys system screw profile on adjacent segment and screw. J Spinal Disord Tech 2010, 23(6):410-417.
[103] Liu CL, Zhong ZC, Hsu HW, Shih SL, Wang ST, Hung C, Chen CS: cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2011, 20(11):1850-1858.
[104] Zhang QH, Teo EC: Finite element application in implant research for treatment of lumbar degenerative disc disease. Medical engineering & physics 2008, 30(10):1246-1256.
[105] 實威國際: Solidworks Simulation原廠教育手冊; 2011.
[106] Shirazi-Adl A, El-Rich M, Pop D, Parnianpour M: Spinal muscle forces, internal loads and stability in standing under various postures and loads¡Xapplication of kinematics-based algorithm. European Spine Journal 2005, 14(4):381-392.
[107] Gudavalli MR, Triano JJ: An analytical model of lumbar motion segment in flexion. Journal of manipulative and physiological therapeutics 1999, 22(4):201-208.
[108] Yamamoto I, Panjabi MM, Crisco T, Oxland T: Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989, 14(11):1256-1260.
[109] Natarajan RN, Williams JR, Andersson GBJ: Recent advances in analytical modeling of lumbar disc degeneration. Spine 2004, 29(23):2733-2741.
[110] Natarajan RN, Williams JR, Andersson GBJ: Modeling changes in intervertebral disc mechanics with degeneration. Journal of bone and joint surgery American volume 2006, 88:36-40.
[111] Benneker LM, Heini PF, Anderson SE, Alini M, Ito K: Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. European Spine Journal 2005, 14(1):27-35.
[112] Zhong ZC, Chen SH, Hung CH. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H 2009;223(2):143-57.
[113] Denozière G, Ku DN. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J biomech 2006;39:766-75.
[114] Panjabi MM. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 2007;22:257-65.
[115] Kuo CS, Hu HT, Lin RM, Huang KY, Lin PC, Zhong ZC, Hseih ML: Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure--a finite element study. BMC musculoskeletal disorders 2010, 11:151.
[116] Wriggers P. Nonlinear Finite Element Methods. Springer Verlag; 2009
[117] Rohlmann A, Zander T, Bergmann G, et al. Optimal stiffness of a pedicle-screw-based motion preservation implant for the lumbar spine. Eur Spine J 2011, 21(4):667-73
指導教授 黃俊仁、林上智
(Jiun-ren Hwang、Shang-chih Lin)
審核日期 2013-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明