博碩士論文 983407001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.236.228.250
姓名 王勝聰(Hseng-Tsong Wang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 漸變波導結構寬頻分光器之研究
(Study of broadband splitter based on weighted structure waveguides)
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出一種由Blackman函數所調變的對稱性漸變波導結構之3-dB分光器,應用在工作波長C+L波段的被動光纖網路裡。此寬頻分光器是使用耦合模理論來進行分析,並且利用三維有限差分波束傳播方法進行模擬。模擬結果發現,在整個C+L波段中,所提出的3-dB分光器的光均勻度,波長相依損失,額外損失和極化相依損失分別都優於2.49E-3 dB、0.018 dB、0.14 dB和0.004 dB。很明顯地,在工作波長C+L波段的被動光纖網路應用裡,此3-dB分光器可以展現良好的性能。
隨後,我們延伸了上述3-dB分光器的研究,藉由簡單地打破原始設計的對稱性,來獲得不同分光比例的輸出。此不同分光比例的寬頻分光器之數值解決方案是設計波長在1.53~1.57 μm區間。我們一樣是使用BPM來驗證所提出的不同分光比例分光器的性能。經由模擬結果,我們推導出幾何移位與所對應的分光比例的關係,是一個二階多項式的關係。另外,透過這種幾何位移,分光比例可以從50:50調變到90:10。波長在1.53~1.57 μm區間,此不同分光比例分光器的額外損失,串擾值,極化相依損失和波長相依之分光比的偏差值分別都優於0.139 dB、-22.75 dB、0.006 dB和0.335%。明顯可見地,我們所提出的不同分光比例分光器一樣都保留了與對稱設計相同的優點,例如低額外損失,低串擾值,對光極化方向不敏感與對光波長不敏感。
摘要(英) In this thesis, we propose a coupling-weighted and velocity-tapered 3-dB splitter with a symmetric structure weighted by the Blackman function for C+L-band passive optical network (PON) applications. The broadband splitter is analyzed by the coupled-mode theory and simulated by the use of three-dimensional finite-difference beam propagation method (BPM). It is found that the power uniformity, wavelength dependent loss, excess loss and polarization dependent loss of the proposed 3-dB splitter in the whole C+L-band are better than 2.49E-3 dB, 0.018 dB, 0.14 dB, and 0.004 dB, respectively. It is evident that the 3-dB splitter can achieve the good performances for C+L-band passive optical network applications.
Furthermore, we extend the approach of the above 3-dB splitter to obtain variable splitting ratios by simply breaking the symmetry of the original design. A numerical solution for the broadband splitter with a variable splitting ratio is designed with wavelengths between 1.53 and 1.57 µm. The performance of the proposed splitter is also verified by using the BPM. It was found that a polynomial function of the splitting ratios accompanying a geometrical shift can be derived from the proposed splitter. The splitting ratio can be changed from 50:50 to 90:10 with this geometrical shift. The excess loss, crosstalk, polarization dependent loss, and splitting ratio variations against wavelength of the proposed splitter with wavelengths between 1.53 and 1.57 µm are better than 0.139 dB, −22.75 dB, 0.006 dB, and 0.335%, respectively. Obviously, the proposed splitter with variable splitting ratio retains the advantages of the symmetric design, such as low excess loss, low crosstalk, polarization insensitivity, and wavelength insensitivity.
關鍵字(中) ★ 絕熱式方向耦合器
★ 布雷克曼函數
★ 耦合器
★ 耦合
★ 模態演化
★ 分光器
★ 不同分光比分光器
★ 波導
★ 權重函數
關鍵字(英) ★ Adiabatic directional coupler
★ Blackman function
★ Coupler
★ Coupling
★ Mode evolution
★ Splitter
★ Variable splitting ratio splitter
★ Waveguide
★ Weighting function
論文目次 摘要…………………………………….……………………………………... I
Abstract…………………………………….………………………………… II
誌謝……………………………………...……………………………………. III
目錄…………………………………….……………………………………... IV
表目錄……….………………………………………….……….…………… V
圖目錄……….………………………….…………………………………….. VI
符號說明….……………....…………….…………………………………….. VIII
一、緒論……….………………………………..……….……..…………… 1
1-1研究背景……….……….….………………………………….. 1
1-2研究動機與目的……….………………………………………… 4
二、漸變波導結構耦合分光器的理論與分析…………………………… 13
2-1耦合模態系統...............……… 14
2-2波導漸變結構與權重函數之關聯和邊界條件… 16
三、漸變波導結構耦合3-dB分光器….…………………………………... 22
3-1結構參數定義與起始條件........…….……………………22
3-2漸變波導結構耦合3-dB分光器的模擬與光學特性分析…23
3-2-1結構參數最佳化設計............…….…….24
3-2-2光學特性分析.......................26
3-3分光器製程容忍度.........................31
3-4討論....................................32
四、不同分光比之分光器設計……….……...................34
4-1研究背景……….…………………………..................34
4-2不同分光比分光器的理論與分析………………........35
4-3不同分光比分光器的模擬與光學特性分析......36
4-3-1幾何移位與分光比的關係………...........38
4-3-2波長與分光比的關係……………………..........40
4-3-3光學特性分析.......................42
4-4不同分光比分光器製程容忍度................46
4-5工作頻帶C+L band (1.53~1.61 μm)…………………….47
4-6討論....................................48
五、結論與未來展望………………………………………………………… 49
5-1 結論………………………………………………………………… 49
5-2 未來展望…………………………………………………………… 50
參考文獻……………………………………………………………………… 52
已發表之論文………………………………………………………………… 55
參考文獻 [1] 陳思宏. (民國96年). FTTH光纖網路建置於不同類型建築物-新施工技術之研究與設計. 國立台北科技大學電子電腦與通訊產業研發碩士論文.
[2] P. W. Shumate. (2008). Fiber-to-the-Home: 1977-2007. J. Lightwave Technol., Vol. 26, pp. 1093-1103.
[3] Intelligent Living Space wabside :
http://ils.org.tw/intelligent/ 江昭佑. (2013) 光纖到家(FTTH:Fiber To The Home)技術簡介.
[4] H. Sasaki and N. Mikoshiba. (1981). Normalized power transmission in single mode optical branching waveguides. Electron. Lett., Vol. 17, pp. 136-138.
[5] Y. Shani, C.H. Henry, R.C. Kistler, R.F. Kazarinov, and K.J. Orlowsky. (1991). Integrated optic adiabatic devices on silicon. IEEE J. Quantum Electron., Vol. 27, pp. 556-566.
[6] R. Adar, C.H. Henry, R.F. Kazarinov, R.C. Kistler, and G.R. Weber. (1992). Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon. J. Lightwave Technol., Vol. 10, pp. 46-50.
[7] Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi. (2007). Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1×32 splitter. Electron. Lett., Vol. 43, pp. 217-218.
[8] Z. Huang, H. P. Chan, and M. A. Uddin. (2010). Low-loss ultracompact optical power splitter. Appl. Opt., Vol. 49, pp. 1900-1907.
[9] L. B. Soldano and E. C. M. Pennings. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., Vol. 13, pp. 615-627.
[10] Y. Zhang, L. Liu, X. Wu, and L. Xu. (2008). Splitting-on-demand optical power splitters using multimode interference (MMI) waveguide with programmed modulations. Opt. Commun., Vol. 281, pp. 426-432.
[11] P. P. Sahu. (2009). Parabolic tapered structure for an ultracompact multimode interference coupler. Appl. Opt., Vol. 48, pp. 206-211.
[12] R. B. Smith. (1976). Analytical solutions for linearly tapered directional couplers. J. Opt. Soc. Amer., Vol. 66, pp. 882-892.
[13] K. A. McGreer, H. Xu, C. Ho, N. Kheraj, Q. Zhu, M. Stiller, and J. Lam. (2006, Mar.). Planar Lightwave Circuits for PON Applications. Opt. Fiber Conf. (OFC2006), Paper NWD4.
[14] L. Zhang, L. Wang, and J. J. He. (2009). Monolithically integrated fiber-to-the-home diplexers and triplexers using a bilevel etched 2×2 optical coupler. Appl. Opt., Vol. 48, pp. F44-F48.
[15] X. J. Chen, Y. Xu, S. Lan, Q. Guo, X. Yang, and L. J. Wu. (2008). Power splitters based on the light-intensity-dependent superprism effect. Appl. Opt., Vol. 47, pp. 4701-4706.
[16] P. Nath, P. Datta, G. Jose, and K. Ch. Sarma. (2008). Lightwave splitting in two dimensional photonic crystal analogue of coupler. Opt. Commun., Vol. 281, pp. 4784-4787.
[17] E. Paspalakis. (2006). Adiabatic three-waveguide directional coupler. Opt. Commun., Vol. 258, pp. 30-34.
[18] A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti. (2009). Analysis of a three-core adiabatic directional coupler. Opt. Commun., Vol. 282, pp. 4524-4526.
[19] S. Y. Tseng and Y. W. Jhang. (2013). Fast and robust beam coupling in a three waveguide directional coupler. IEEE Photon. Technol. Lett., Vol. 25, pp. 2478-2481.
[20] S. Y. Tseng, R. D. Wen, Y. F. Chiu, and X. Chen. (2014). Short and robust directional couplers designed by shortcuts to adiabaticity. Opt. Express, Vol. 22, pp. 18849-18859.
[21] S. Y. Tseng. (2014). Robust coupled-waveguide devices using shortcuts to adiabaticity. Opt. Lett., Vol. 39, pp. 6600-6603.
[22] A. Syahriar, V. M. Schenider, and S. Al-Bader. (1998). The design of mode evolution couplers. J. Lightwave Technol., Vol. 16, pp. 1907-1914.
[23] C. F. Chen, Y. S. Ku, and T. T. Kung. (2007). Optimal design of coupling waveguide structure for adiabatic optical directional full couplers weighted by sin-square and raised-cosine functions. Opt. Commun., Vol. 280, pp. 79-86.
[24] Y. S. Ku, C. F. Chen, C. N. Shauo, and H. J. Shy. (2010). Short-length and broadband mismatched optical couplers with tapered Hamming function for C- and L-band. Optik., Vol. 121, pp. 831-838.
[25] C. F. Chen, Y. S. Ku, and T. T. Kung. (2009). Design of short length and C+L-band mismatched optical coupler with waveguide weighted by the Blackman function. Opt. Commun., Vol. 282, pp. 208-213.
[26] C. F. Chen. (2010). New weighting function designed for low-crosstalk, small length mismatched optical coupler, Jpn. J. Appl. Phys., Vol. 49, pp. 032501-1-032501-6.
[27] V. M. Schneider and H. T. Hattori. (2000). High-tolerance power splitting in symmetric triple-mode evolution couplers. IEEE J. Quantum Electron., Vol. 36, pp. 923–930.
[28] W. H. Louisell. (1955). Analysis of the single tapered mode coupler. Bell. Syst. Tech. J., Vol. 34, pp. 853-870.
[29] A. G. Fox. (1955). Wave coupling by warped normal modes. Bell Syst. Tech. J., Vol. 34, pp. 823-852.
[30] J. S. Cook. (1955). Tapered velocity coupler. Bell Syst. Tech. J., Vol. 34, pp. 807-822.
[31] R. C. Alferness and P. S. Cross. (1978). Filter characteristics of codirectionally coupled waveguides with weighted coupling. IEEE J. Quantum Electron., Vol. 14, pp. 843-847.
[32] R. C. Alferness. (1979). Optical directional couplers with weighted coupling. Appl. Phys. Lett., Vol. 35, pp. 260-262.
[33] D. R. Rowland, Y. Chen, and A.W. Snyder. (1991). Tapered mismatched couplers. J. Lightwave Technol., Vol. 9, pp. 567-570.
[34] G. H. Song and W. J. Tomlinson. (1992). Fourier analysis and synthesis of adiabatic tapers in integrated optics. J. Opt. Soc. Amer. A., Vol. 9, pp. 1289-1300.
[35] H. Nishihara, M. Haruna, and T. Suhara. (1989). Optical Integrated Circuits. McGraw-Hill; New York.
[36] W. P. Huang and C. L. Xu. (1993). Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE J. Quantum Electron., Vol. 29, pp. 2639-2649.
[37] M. Moooka and U. Teruaki. (2009). Temperature-independent silicon waveguide optical filter. Opt. Lett., Vol. 34, pp. 599-601.
[38] S.Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen. (2007). Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms. Opt. Express, Vol. 15, pp. 9015-9021.
[39] Q. Lai, M. Bachmann, W. Hunziker, P.A. Besse, and H. Melchior. (1996). Arbitrary ratio power splitters using angled silica on silicon multi- mode interference couplers. Electron. Lett., Vol. 32, pp. 1576-1577.
[40] P. A. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior. (1996). New 2x2 and 1x3 multimode interference couplers with free selection of power splitting ratios. J. Lightwave Technol., Vol. 14, pp. 2286-2293.
[41] Y. Tian, J. Qiu, M. Yu, Z. Huang, Y. Qiao, Z. Dong, and J. Wu. (2018). Broadband 1 × 3 couplers with variable splitting ratio using cascaded step-size MMI. IEEE Photonics Journal, Vol. 10, pp.6601008.
[42] K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q.Song. (2017). Integrated photonic power divider with arbitrary power ratios. Opt. Lett., Vol. 42, pp. 855-858.
[43] Q. Deng, L. Liu, X. Li, and Z. Zhou. (2014). Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett., Vol. 39, pp. 5590-5593.
[44] H. T. Wang, C. F. Chen, and S. Chi. (2015). A good performance 3-dB splitter based on coupling-weighted and velocity-tapered waveguides. Opt. Commun., Vol. 350, pp. 97-102.
指導教授 陳奇夆 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明