博碩士論文 983409003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.118.145.114
姓名 張宏臺(Hung-Tai Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 矽鍺奈米異質結構之製備與應用研究
(Study on SiGe Hetero-epitaxial Nanostructures and Their Application)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於矽基板上成長的應變誘發自組裝三維方向鍺/矽鍺量子點,不論在基礎研究或應用領域上都是非常熱門的主題。鍺/矽(100)材料系統被公認為所有“自組裝量子點”之形成機制及表面形態進化的基礎研究模型。就技術發展而言,鍺/矽(100)材料在未來電子、熱電及光電元件之應用上有極大之潛力。
本論文首先介紹藉由原子力顯微鏡搭配選擇性蝕刻可得知鍺量子點經由退火效應後的成份分佈變化。實驗結果證實鍺量子點在成長與原位退火後時會有成份重新分佈。我們同時發現,一旦超巨大半球形鍺量子點產生後,鍺量子點的非對稱分佈(半月形)會轉變成幾乎對稱(十字形)的結構。此外,超巨大半球形鍺經由長時間退火及蝕刻後,會呈現富含矽成份的雙環結構。利用包含表面擴散過程的基本熱力學原理即可解釋這些現象。
本論文也提出成長複合式鍺/矽/鍺量子點。藉由嵌入性矽薄膜之作用,可成功製備出高濃度、高品質鍺量子點。嵌入矽薄膜可作為優先成核位置,讓後續鍺原子能有效的沉積於上,並大幅降低聚集形鍺量子點的形成機率。另外在選擇性蝕刻實驗中發現,上層富含鍺部分被帶走後,與之前的研究相較,被蝕刻之複合式鍺/矽/鍺量子點呈現出金字塔形之結構,而傳統式鍺量子點則呈現對稱成分分佈之環形結構。此外,藉由調控嵌入矽薄膜之結構參數可以進一步去控制複合式鍺/矽/鍺量子點之形狀及尺寸。實驗結果同時顯示嵌入矽薄膜之厚度小於2奈米以下,則無法抑制上下層鍺原子的交互擴散。
論文之第三部分為有效地製備出高品質薄膜狀之複合式量子點,此複合式量子點之薄膜層可作為熱電材料應用。利用複合式量子點之概念,成功開發出三重式鍺/矽/鍺/矽/鍺之複合量子點結構。選擇性化學式蝕刻實驗顯示,嵌入性矽薄膜之表面擴散以及矽鍺合金的效應在複合式量子點中成長機制中扮演了重要的角色。此薄膜狀複合式量子點材料被證明了,比起傳統式鍺量子點更能有效的降低熱傳導效率(κ)。此原因可能為複合式鍺量子點具有高界面矽/鍺密度及區域性合金效應可增強聲子散射。
本論文最後介紹自組裝矽鍺量子點於成長於應變矽鍺磊晶層上之研究。矽鍺量子點成長於應變矽鍺磊晶層上,由於矽鍺磊晶應變層之表面粗糙度上升和應變能的影響,導致量子點密度及均勻性都能提升。而量子點之尺寸提升是因為鍺潤溼層厚度的降低,導致矽原子能輕易跨越鍺潤溼層界面進入矽鍺量子點而提升尺寸。藉由薄膜矽覆蓋於矽鍺磊晶應變層上,可調控矽鍺磊晶應變層之總應變能,進而去調控量子點之尺寸及均勻性。綜合以上實驗結論,矽鍺量子點成長於矽鍺磊晶應變層可作為未來光電及熱電之潛力材料。
摘要(英) Strain-driven self-assembly of three-dimensional Ge or SiGe islands on Si substrates is an active topic of both fundamental and practical interests. The Ge/Si (100) material system has been regarded as prototypical for investigating the basic phenomena, for example, the formation of ‘‘self-assembled quantum dots’’. Technologically, Ge/Si (100) is of interest for possible applications in electronic, thermoelectric and optoelectronic devices.
In the first part of this thesis, the annealing effects on the composition distribution of Ge islands on Si (001) were investigated by atomic force microscopy combined with selective wet chemical etching. Experimental results demonstrate that there is a strong composition redistribution occurring during island growth and postgrowth annealing. We observe that, once Ge superdomes appear, the asymmetric composition profile of the Ge domes transforms into an almost symmetric structure. Moreover, the Ge superdomes exhibit a double-ring composition profile of Si after long-time annealing. These phenomena could be explained within a simple thermodynamic model that involves only surface diffusion process.
After the discussion on the growth of SiGe QDs and the annealing effect, the composite Ge/Si/Ge islands (CQDs) have also been investigated. After upper Ge-rich parts were removed by selective etching, the etched Ge/Si/Ge composite islands exhibit pyramid structures, which differed from the ring-like isocompositional profiles observed in conventional Ge islands. The shape and size distribution of Ge/Si/Ge composite islands can be further controlled by tuning the island parameters. Experimental results also demonstrate that the inserted Si layer less than 2 nm is disabled from blocking the Ge atoms out-diffusion from sub-dots.
In the third part of the thesis, we present an effective approach to grow high-quality thin film of composite quantum dots (CQDs) as a building block for thermoelectric materials, in which 3 times the usual Ge deposition can be incorporated within a 3-fold CQD. Selective chemical etching experiments reveal that a thin Si inserted layer in the CQDs modifies the growth mechanism through surface-mediated diffusion and SiGe alloying. Such thin-film-like CQD materials are demonstrated to exhibit reduced thermal conductivity κ with respect to the conventional QDs, perhaps as a consequence of enhanced diffusive phonon scattering from the high Si/Ge interface density and enhanced local alloying effect.
Finally, the growth of self-assembled Ge(Si) islands on a strained Si1-xGex layer is studied. The size and the surface density of islands are found to increase in the strain SiGe layer. The increased surface density and uniformity are related to augmentation of the surface roughness after deposition of the SiGe layer. The increased island size is attributed to enhanced Si intermixing and to a wetting layer thickness reduction. The influence of Si cap on SiGe strain layer is also discussed. In order to control the size and uniformity of Ge QDs, the Si spacer can tune the strain energy from SiGe layer. These results indicate that Ge QDs on SiGe strain layer would be potentially useful as an optoelectronic and thermoelectric material.
關鍵字(中) ★ 矽鍺
★ CVD磊晶
★ 熱電
★ 自組裝
★ 量子點
關鍵字(英) ★ SiGe
★ CVD Epitaxy
★ Thermoelectric
★ Self assembled
★ Quantum Dot
論文目次 Contents
Abstract----------------------------------------------------------------------------I
Acknowledgements--------------------------------------------------------------V
Contents-------------------------------------------------------------------------VII
Chapter 1 SiGe Introduction
1.1 Motivation-----------------------------------------------------------------------------------1
1.2 SiGe Application in Source/Drain Engineering----------------------------------------2
1.3 SiGe Application in Virtual Substrates--------------------------------------------------2
1.4 SiGe Application in III-V Devices-------------------------------------------------------3
Chapter 2 Ge Quantum Dots
2.1 Introduction to Quantum Dots-------------------------------------------------------------5
2.2 SiGe or Ge Quantum Dots-----------------------------------------------------------------6
2.3 Formation of Self-Assembled Ge Dots---------------------------------------------------7
2.3.1 Stranski-Krastanov Growth Mode of Ge Dots----------------------------------7
2.3.2 Shape Transition of Ge Dots-------------------------------------------------------7
2.4 Self-Ordered Ge Dot structures------------------------------------------------------------9
2.4.1 Vertically Self-Aligned Ge Dots Structure---------------------------------------9
2.4.2 Laterally Self-Ordered Arrays of Ge Dots Structure-------------------------10
2.5 Applications of Self-Assembled Ge Dots-----------------------------------------------11
2.5.1 SiGe QDs Infrared Photodetectors----------------------------------------------11
2.5.2 Dot-Based Field-Effect Transistors---------------------------------------------11
2.5.3 Room-Temperature Light-Emitting Diodes------------------------------------12
2.5.4 Thermal Conductivity in SiGe/Si Nanodot Superlattices--------------------13
Chapter 3 Experimental Procedures
3.1 Ultra High Vacuum Chemical Vapor Deposition--------------------------------------14
3.1.1 Introduction to UHV/CVD-------------------------------------------------------14
3.1.2 Surface Pre-Cleaning Before SiGe Epitaxial Growth------------------------15
3.2 Transmission Electron Microscope Observation--------------------------------------16
3.3 Atomic Force Microscope Observation------------------------------------------------16
3.4 Raman Spectrometer Analysis-----------------------------------------------------------16
3.5 Selective Wet Chemical Etching---------------------------------------------------------17
3.6 Thermoelectric Measurement------------------------------------------------------------18
3.6.1 3-Omega Method-----------------------------------------------------------------18
3.6.2 Steady-State Method-------------------------------------------------------------20
Chapter 4 Ge Redistribution of Self-Assembled Ge Islands on Si (001) during Annealing
4.1 Motivation----------------------------------------------------------------------------------21
4.2 Experimental Procedures-----------------------------------------------------------------22
4.3 Results and Discussion--------------------------------------------------------------------23
4.3.1 Shape Transition and Composition Redistribution of Ge QD During Ge Overgrowth---------------------------------------------------------------------23
4.3.2 Shape Transition and Composition Redistribution of Ge QD During Annealing-----------------------------------------------------------------------25
4.4 Summary and Conclusions---------------------------------------------------------------27
Chapter 5 Thermodynamics Manipulated the Formation Mechanism of Ge/Si/Ge Quantum Dot
5.1 Motivation----------------------------------------------------------------------------------28
5.2 Experimental Procedures-----------------------------------------------------------------29
5.3 Results and Discussion--------------------------------------------------------------------30
5.3.1 The Formation Mechanism of Ge/Si/Ge Composite Islands---------------30
5.3.2 Shape Transition and Composition Redistribution of Ge/Si(2nm)/Ge QD During Annealing----------------------------------------------------------------32
5.3.3 Shape Transition and Composition Redistribution of Ge/Si(1nm)/Ge QD During Annealing--------------------------------------------------------------34
5.4 Summary and Conclusions---------------------------------------------------------------36
Chapter 6 Multifold Ge/Si/Ge Composite Quantum Dots with Reduced Thermal Conductivity
6.1 Motivation----------------------------------------------------------------------------------37
6.2 Experimental Procedures-----------------------------------------------------------------39
6.3 Results and Discussion--------------------------------------------------------------------40
6.3.1 Shape Transition and Composition Distribution of Various Types of Ge QD----------------------------------------------------------------------------------40
6.3.2 Thermal Conductivity of Ge QD-------------------------------------------------44
6.4 Summary and Conclusions---------------------------------------------------------------46
Chapter 7 Influence of a Predeposited Si1-xGex Layer and Si Capping Layer on the Growth of Self-Assembled Ge Dot
7.1 Motivation----------------------------------------------------------------------------------47
7.2 Experimental Procedures-----------------------------------------------------------------48
7.3 Results and Discussion--------------------------------------------------------------------49
7.4 Summary and Conclusions---------------------------------------------------------------53
Chapter 8 Summary and Conclusions
8.1 Ge Redistribution of Self-Assembled Ge Islands on Si (001) During Annealing----------------------------------------------------------------------------------54
8.2 Thermodynamics Manipulated the Formation Mechanism of Ge/Si/Ge Quantum Dot------------------------------------------------------------------------------55
8.3 Multifold Ge/Si/Ge Composite Quantum Dots with Reduced Thermal Conductivity--------------------------------------------------------------------------------55
8.4 Influence of a Predeposited Si1-xGex Layer and Si Capping Layer on the Growth of Self-Assembled Ge Dot---------------------------------------------------------------56
Chapter 9 Future Prospects
9.1 Self-Assembled Ge QDs on Pit-Patterned Substrate----------------------------------57
9.2 Control Surface Morphology and Density by Varying Ge Content in SiGe Strain Buffer Layer--------------------------------------------------------------------------------57
9.3 Fabrication of Self-Assembled Ge QDs on SOI Wafer as a Thermoelectric Material-------------------------------------------------------------------------------------58
References------------------------------------------------------------------------------------59
Figures-----------------------------------------------------------------------------------------77
Publication List---------------------------------------------------------------------------111
參考文獻 References
Chapter 1
[1.1] R. Schaller, IEEE Spectrum (1997) 52–59.
[1.2] G. E. Moore, Components 86 1(1998) 82–85.
[1.3] J. Xie, C. Lee, H. Feng, J. Microelectromech. Syst. 19 (2010) 317-324.
[1.4] X. Yu, Y. Wang, Y. Liu, T. Li, H. Zhou, X. Gao, F. Feng, T. Roinila, Y. Wang, J. Micromech. Microeng. 22 (2012) 105011.
[1.5] M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturm, M. Franosch, G. Wachutka, Sens. Actuators A 114 (2004) 362.
[1.6] S. Ayazian, V. A. Akhavan, E. Soenen, A. Hassibi, IEEE Trans. Biomed. Eng. 6 (2012) 4.
[1.7] D. J. Stein, R. Nasby, R. K. Patel, A. Hsia, R. Bennett, Proc. of SPIE 6287 (2006) 62870.
[1.8] X. Cao, W. J. Chiang, Y. C. King, Y. K. Lee, IEEE Trans. Power Electron. 22 (2007) 2.
[1.9] H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, IEEE J. SOLID STATE CIRCUITS 43 (2008) 1.
[1.10] M. Lundstrom, Technical Digest, 789 (2003) 33.1.1.
[1.11] C. Jungemann and B. Meinerzhagen, Technical Digest (2003) 191.
[1.12] A. G. O’neill and A. D. Antoniadis, IEEE Trans. Electron Devices 43 (1996) 911.
[1.13] V. A. Shah, A. Dobbie, M. Myronov, D. R. Leadley, Thin Solid Films 519 (2011) 7911.
[1.14] V. A. Shah, A. Dobbie, M. Myronov, D. R. Leadley, Solid-State Electron. 62 (2011) 189.
[1.15] K. F. Wang, Y. Zhang, W. Zhang, Appl. Surf. Sci. 258 (2012) 1935.
[1.16] G. Wang, R. Loo, S. Takeuchi, L. Souriau, J. C. Lin, A. Moussa, H. Bender, B. De Jaeger, P. Ong, W. Lee, M. Meuris, M. Caymax, W. Vandervorst, B. Blanpain, M. M. Heyns, Thin Solid Films 518 (2010) 2538.
[1.17] S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, D. A. B. Miller, Appl. Phys. Lett. 98 (2011) 151108.
[1.18] S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, D. A. B. Miller, IEEE Photon. Technol. Lett. 24 (2012) 461.
[1.19] Y. Moriyama, N. Hirashita, K. Usuda, S. Nakaharai, N. Sugiyama, E. Toyoda, S. I. Takagi, Appl. Surf. Sci. 256 (2009) 823.
[1.20] M. Kurosawa, N. Kawabata, T. Sadoh, M. Miyao, Appl. Phys. Lett. 100 (2012) 172107.
[1.21] T. Sakane, K. Toko, T. Tanaka, T. Sadoh, M. Miyao, Solid-State Electron. 60 (2011) 22.
[1.22] J. A. Carlina , C. L. Andreb , O. Kwonc , M. Gonzáleza , M. R. Luecka , E. A. Fitzgeraldd , D. M. Wilte , and S. A. Ringela ECS Transactions, 3 (2006) 729-743.
Chapter 2
[2.1] L. E. Brus, Columbia University (2007) Retrieved 2009-07-07.
[2.2] D. J. Norris (1995) Retrieved 2009-07-07.
[2.3] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 30 (2000) 545.
[2.4] Ekimov, A. I. & Onushchenko, A. A., JETP Lett. 34 (1981) 345.
[2.5] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel , Phys. Rev. Lett. 60 (1988) 535.
[2.6] www.evidenttech.com: How quantum dots work. (2009) Retrieved 2009-10-15.
[2.7] J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J.-P. Noël, and D. C. Houghton, Phys. Rev. Lett. 66 (1991) 1362.
[2.8] T. P. Pearsall, Electronic Materials Series No. 6, Quantum Semiconductor Devices and Technologies (2000).
[2.9] G. Xia, O. O. Olubuyide, and J. L. Hoyt, Appl. Phys. Lett. 88 (2006) 013507.
[2.10] J. -M. Baribeau, X. Wu, and D. J. Lockwood, J. Vac. Sci. Technol. A 24 (2006) 663.
[2.11] H. Lüth, Appl. Surf. Sci. 130-132 (1998) 855-865.
[2.12] K. L. Wang, J. L. Liu, and G. Jin, J. Cryst. Growth 237-239 (2002) 1892-1897.
[2.13] M. Stoffel, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 82 (2003) 3236.
[2.14] C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, Appl. Phys. Lett. 85 (2004) 2697.
[2.15] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64 (1990) 1943.
[2.16] Y. -W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65 (1990) 1020.
[2.17] J. A. Floro, G. A. Lucadamo, E. Chason, L. B. Freund, M. Sinclair, R. D. Twesten, and R. Q. Hwang, Phys. Rev. Lett. 80 (1998) 4717.
[2.18] U. Denker, O. G. Schmidt, N. Y. Jin-Philipp, and K. Eberl, Appl. Phys. Lett. 78 (2001) 3723.
[2.19] T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. Rosner, J. Appl. Phys. 81 (1997) 211.
[2.20] F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80 (1998) 984.
[2.21] A. Rastelli, H. von Känel, B. J. Spencer, and J. Tersoff, Phys. Rev. B 68 (2003) 115301.
[2.22] O. G. Schmidt, U. Denker, S. Christiansen, and F. Ernst, Appl. Phys. Lett. 81 (2002) 2614.
[2.23] J. M. Villas-Boas, A. O. Govorov, S. E. Ulloa, Phys. Rev. B 69 (2004) 125342.
[2.24] G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, A. Forchel, Phys. Rev. Lett. 94 (2005) 157401.
[2.25] C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff , Phys. Rev. B 53 (1996) 16334.
[2.26] K. Sakamoto, H. Matsuhata, M. O. Tanner, D. Wang, and K. L. Wang, Thin Solid Films 321 (1998) 55.
[2.27] Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, Appl. Phys. Lett. 71 (1997) 3567.
[2.28] S. Y. Shirgaev, E. V. Pedersen, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, Thin Solid Films 294 (1997) 311.
[2.29] Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75 (1995) 2542.
[2.30] C. Teichert, J. Tersoff, and M. G. Lagally, Phys. Rev. B 53 (1996) 16334.
[2.31] G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. Y. Nguyen, Appl. Phys. Lett. 75 (1999) 2752.
[2.32] G. Jin, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 76 (2000) 3591.
[2.33] C. -H. Lin, C. -Y. Yu, C. -C. Chang, C. -H. Lee, Y. -J. Yang, W. S. Ho, Y. -Y. Chen, M. H. Liao, C. -T. Cho, C. -Y. Peng and C. W. Liu, Trans. on Nanotech. 7 (2008) 558.
[2.34] V. Jovanovic, C. Biasotto, L. K. Nanver, J. Moers, D. Gru¨tzmacher, J. Gerharz, G. Mussler, J. van der Cingel, J. J. Zhang, G. Bauer, O. G. Schmidt, and L. Miglio, IEEE Electron Device Lett. 31 (2010) 1083.
[2.35] L. K. Nanver, V. Jovanovic´, C. Biasottoa, J. Moers, D. Gru¨tzmacher, J. J. Zhang, N. Hrauda, M. Stoffel, F. Pezzoli, O. G. Schmidt, L. Miglio, H. Kosina, A. Marzegalli, G. Vastola, G. Mussler, J. Stangl, G. Bauer, J. van der Cingel, and E. Bonera, Solid State Electron. 60 (2011) 75.
[2.36] N. Hrauda, J. J. Zhang, E. Wintersberger, T. Etzelstorfer, B. Mandl, J. Stangl, D. Carbone, V. Holy, V. Jovanovic, C. Biasotto, L. K. Nanver, J. Moers, D. Grutzmacher, and G. Bauer, Nano Lett. 11 (2011) 2875.
[2.37] K. Kawaguchi, M. Morooka, K. Konishi, S. Koh, and Y. Shiraki, Appl. Phys. Lett. 81 (2002) 817–819.
[2.38] S. Fukatsu, H. Sunamuru, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71 (1997) 258–261.
[2.39] O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, A. I. Nikiforov, A. I. Yakimov, and B. Voigtlander, Thin Solid Films 367 (2000) 75.
[2.40] O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, A. I. Nikiforov, A. I. Yakimov, and B. Voigtlander, Thin Solid Films 367 (2000) 75.
[2.41] J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, Appl. Phys. Lett. 74 (1999) 185.
[2.42] P. Boucaud, V. Le Thanh, S. Sauvage, D. De’barre, and D. Bouchier, Appl. Phys. Lett. 74 (1999) 401.
[2.43] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Proskuryakov, J. Appl. Phys. 89 (2001) 5676.
Chapter 3
[3.1] V. Atluri, N. Herbots, D. Dagel, S. Bhagvat, S. Whaley, Nuclear Instruments and Methods in Physics Research B I I8 (1996) 144.
[3.2] Yuji Takakuwa, Masafumi Nogawa, Michio Niwano, Hitoshi Katakura, Satoshi Matsuyoshi, Hiroyuki Ishida, Hiroo Kato and Nobuo Miyamoto, Jpn. J. Appl. Phys. 28 (1989) L1274.
[3.3] H. Bender, T. Trenkler, P.W. Mertens, M. Meuris, W. Vandervorst, M.M. Heyns, J. Appl. Phys., 77 (1995) 1323.
[3.4] U. Denker, M. Stoffel, O. G. Schmidt, Phys. Rev. Lett., 90 (2003) 196102-1.
[3.5] S. W. Lee, H. T. Chang, C. H. Lee, S. L. Cheng, C. W. Liu, Thin Solid Films 518 (2010) S196.
[3.6] H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung, P. W. Li, S. W. Lee, Appl. Phys. Lett., 102 (2013) 101902.
[3.7] G. David, R. O. Pohl, Phys. Rev, B 35 (1987) 4067.
[3.8] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama, Minoru Todoki, J. Appl. Phys., 91 (2002) 9772.
[3.9] N. O. Birge, P. K. Dixon, N. Menon, Thermochimica Acta, 304-305 (1997) 51.
[3.10] E. S. Dettmer, B. M. Romenesko, H. K. Charles, Jr., B. G. Carkhuff, D. J. Mewll, IEEE transactions on components, hybrids, and manufacturing technology, 12 (1989) 543.
Chapter 4
[4.1] K. Eberl, M. O. Lipinski, Y. M. Manz, W. Winter, N.Y. Jin-Phillipp, O. G. Schmidt, Physica E 9 (2001) 164.
[4.2] K .L. Wang, J. L. Liu, G. Jin, J. Cryst. Growth 237 (2002) 1892.
[4.3] S. W. Lee, Y. L. Chueh, L. J. Chen, L. J. Chou, P. S. Chen, M. -J. Tsai, C. W. Liu, J. Appl. Phys. 98 (2005) 073506.
[4.4] H. C. Chen, S. W. Lee, L. J. Chen, Adv. Mater. 19 (2007) 222.
[4.5] J. T. Robinson, A. Rastelli, O. Schmidt, O. D. Dubon, Nanotechnology 20 (2009) 085708.
[4.6] R. A. Soref, Proc. IEEE 81 (1993), 1687.
[4.7] P. M. Mooney and J. O. Chu, Annu. Rev. Mater. Sci. 30 (2000), 335.
[4.8] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97 (2005), 011101.
[4.9] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, J. Appl. Phys. 87 (2000) 7275.
[4.10] W. -H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M. -J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[4.11] M. L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[4.12] G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D.A.A. Ohlberg, R.S. Williams, Science 279 (1998) 353.
[4.13] A. Rastelli, M. Kummer, H. von Känel, Phys. Rev. Lett. 87 (2001) 256101-1.
[4.14] G. Medeiros-Ribeiro, R. S. Williams, Nano Lett. 7 (2007) 223.
[4.15] Y. Q. Wu, J. Zou, F. H. Li, J. Cui, J. H. Lin, R.Wu, Z. M. Jiang, Nanotechnology 18 (2007) 025404.
[4.16] S. W. Lee, L. J. Chen, P. S. Chen, M. -J. Tsai, C. W. Liu, T. Y. Chien, C. T. Chia, Appl. Phys. Lett. 83 (2003) 5283.
[4.17] T. U. Schülli, J. Stangl, Z. Zhong, R. T. Lechner, M. Sztucki, T. H. Metzger, G. Bauer, Phys. Rev. Lett. 90 (2003) 066105.
[4.18] A. V. Kolobov, H. Oyanagi, S. Wei, K. Brunner, G. Abstreiter, K. Tanaka, Phys. Rev. B 66 (2002) 075319.
[4.19] A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K, Kern, T. H. Metzger, O. G. Schmidt, Nano Lett. 8 (2008) 1404.
[4.20] F. M. Ross, R. M. Tromp, M. C. Reuter, Science. 286 (1999) 1931.
[4.21] F. M. Ross, J. Tersoff, R. M. Tromp, Phys. Rev. Lett. 80 (1998) 984.
[4.22] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A. M. Bittner, A. Rastelli, U. Denker, O. G. Schmidt, and K. Kern, Phys. Rev. B 72 (2005) 195320.
[4.23] S. W. Lee, H. T. Chang, C. H. Lee, S. L. Cheng, C. W. Liu, Thin Solid Films. 518 (2010) S196–S199.
[4.24] A. V. Kolobov, K. Morita, K. M. Itoh, E. E. Haller, Appl. Phys. Lett. 81 (2002) 3855.
Chapter 5
[5.1] K. Eberl, M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, Physica E 9 (2001) 164.
[5.2] K. L. Wang, J. L. Liu and G. Jin, J. Cryst. Growth 237 (2002) 1892.
[5.3] S. W. Lee, B. L. Wu, and H. T. Chang, J. Electrochem. Soc. 155 (2010) H174.
[5.4] J. T. Robinson, A. Rastelli, O. Schmidt, and O. D. Dubon, Nanotechnology 20 (2009) 085708.
[5.5] H. T. Chang, W. Y. Chen, T. M. Hsu, P. S. Shushpannikov, R. V. Goldstein, and S. W. Lee, Electrochem. Solid-State Lett.13 (2010) K43.
[5.6] N. Usami, Y. Araki, Y. Ito, M. Miura, and Y. Shiraki, Appl. Phys. Lett. 76 (2000) 3723.
[5.7] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Mu ̈ck, J. Appl. Phys. 87 (2000) 7275.
[5.8] W. -H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[5.9] S. W. Lee, Y. L. Chueh, L. J. Chen, L. J. Chou, P. S. Chen, M. -J. Tsai, and C. W. Liu, J. Appl. Phys. 98 (2005) 073506.
[5.10] J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76 (1996) 1675.
[5.11] O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74 (1999) 1272.
[5.12] P. S. Chen, S. W. Lee, Y. H. Peng, C. W. Liu and M. -J. Tsai, Phys. Stat. Sol.(b) 241 (2004) 3650.
[5.13] U. Denker, M. Stoffel and O. G. Schmidt, Phys. Rev. Lett., 90 (2003) 196102.
[5.14] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Ka ̈nel, A. M. Bittner, J. Tersoff, U. Denker, O. G. Schmidt, G. Costantini, and K. Kern, Surf. Sci. 600 (2006) 2608.
[5.15] F. H. Li, Y. L. Fan, X. J. Yang, Z. M. Jiang, Y. Q. Wu, and J. Zou, Appl. Phys. Lett., 89 (2006) 103108.
[5.16] G. Katsaros, M. Stoffel, A. Rastelli, O. G. Schmidt, K. Kern, and J. Tersoff, Appl. Phys. Lett. 91 (2007) 013112.
[5.17] S. W. Lee, C. H. Lee, H. T. Chang, S. L. Cheng, and C. W. Liu, Thin Solid Films, 517 (2009) 5029.
[5.18] S. W. Lee, H. T. Chang, C. H. Lee, S. L. Cheng, and C. W. Liu, Thin Solid Films, 518 (2010) S196.
Chapter 6
[6.1] G. J. Snyder, E. S. Toberer, Nature Mater. 7 (2008) 105.
[6.2] L. Shi, D. Yao, G. Zhang, B. Li, Appl. Phys. Lett. 96 (2010) 173108.
[6.3] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson III, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, I. El-Kady, Nano. Lett. 11 (2011) 107.
[6.4] X. Fan, G. Zeng, C. LaBounty, J. E. Bowers, E. Croke, Appl. Phys. Lett. 78 (2001) 1580.
[6.5] C. C. Wang, K. H. Chen, I. H. Chen, W. T. Lai, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, P. W. Li, IEEE Trans. Nanotechnology. 11 (2012) 657.
[6.6] J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys. 35 (1964) 2899.
[6.7] Z. Wang, N. Mingo, Appl. Phys. Lett. 97 (2010) 101903.
[6.8] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, Appl. Phys. Lett. 77 (2000) 1490.
[6.9] N. F. Hinsche, I. Mertig, P. Zahn, J. Phys. Condens. Matter. 24 (2012) 275501.
[6.10] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, A. Shakouri, Nano. Lett. 9 (2009) 711.
[6.11] A. S. Henry, G. Chen, J. Comput. Theor. Nanosci. 5 (2008) 141.
[6.12] K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Nano. Lett. 10 (2010) 4341.
[6.13] T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, M. S. Dresselhaus, Superlattices Microstruct. 28 (2000) 199.
[6.14] B. Yang, J. L. Liu, K. L. Wang, G. Chen, Appl. Phys. Lett. 80 (2002) 1758.
[6.15] B. Yang, W. L. Liu, J. L. Liu, K. L. Wang, G. Chen, Appl. Phys. Lett. 81 (2002) 3588.
[6.16] J. L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, D. P. Yu, J. Cryst. Growth. 1111 (2001) 227-228.
[6.17] J. L. Liu, A. Khitun, K. L. Wang, W. L. Liu, G. Chen, Q. H. Xie, S. G. Thomas, Phys. Rev. B 67 (2003) 165333.
[6.18] M. L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[6.19] E. Mateeva, P. Sutter, J. C. Bean, M. G. Lagally, Appl. Phys. Lett. 71 (1997) 3233.
[6.20] S. W. Lee, H. T. Chang, C. H. Lee, S. L. Cheng, C. W. Liu, Thin Solid Films. 518 (2010) S196.
[6.21] J. J. Zhang, F. Montalenti, A. Rastelli, N. Hrauda, D. Scopece, H. Groiss, J. Stangl, F. Pezzoli, F. Schäffler, O. G. Schmidt, L. Miglio, G. Bauer, Phys. Rev. Lett. 105 (2010) 166102.
[6.22] J. Zhang, A. Rastelli, O. G. Schmidt, Günther Bauer, Appl. Phys. Lett. 97 (2010) 203103.
[6.23] Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, Z. Y. Zhong, Nanotechnology. 21 (2010) 17.
[6.24] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von K¨anel, A. M. Bittner, J. Tersoff, U. Denker, O. G. Schmidt, G. Costantini, K. Kern, Surf. Sci. 600 (2006) 2608.
[6.25] S. W. Lee, L. J. Chen, P. S. Chen, M. -J. Tsai, C. W. Liu, T. Y. Chien, C. T. Chia, Appl. Phys. Lett. 83 (2003) 5283.
[6.26] U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N. Y. Jin-Phillipp, D. E. Jesson, O. G. Schmidt, Phys. Rev. Lett. 94 (2005) 216103.
[6.27] S. W. Lee, H. T. Chang, J. K. Chang, S. L. Cheng, J. Electrochem. Soc. 158 (2011) H1113.
[6.28] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A. M. Bittner, A. Rastelli, U. Denker, O. G. Schmidt, K. Kern, Phys. Rev. B 72 (2005) 195320.
[6.29] V. Cherepanov, B. Voigtländer, Phys. Rev. B 69 (2004) 125331.
[6.30] J. J. Zhang, N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schäffler, O. G. Schmidt, G. Bauer, Appl. Phys. Lett. 96 (2010) 193101.
[6.31] M. G. Holland, Phys. Rev. 132 (1963) 2461.
[6.32] K. Hippalgonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Nano Lett. 10 (2010) 4341.
Chapter 7
[7.1] D. J. Paul, Semicond. Sci. Technol. 19 (2004) R75.
[7.2] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, A. Lochtefeld, J. Appl. Phys. 97 (2005) 011101.
[7.3] K. Brunner, Rep. Prog. Phys. 65 (2002) 27.
[7.4] N. Hrauda, J. J. Zhang, J. Stangl, A. Rehman-Khan, G. Bauer, M. Stoffel, O. G. Schmidt, V. Jovanovich, L. K. Nanver, J. Vac. Sci. Technol. B 27 (2009) 912.
[7.5] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, A. Mück, J. Appl. Phys. 87 (2000) 7275.
[7.6] W. -H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M. -J. Tsai, Appl. Phys. Lett. 83 (2003) 2958.
[7.7] M. L. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 92 (2008) 053112.
[7.8] M. Ya. Valakh, P. M. Lytvyn, A. S. Nikolenko, V. V. Strelchuk, Z. F. Krasilnik, D. N. Lobanov, A. V. Novikov, Appl. Phys. Lett. 96 (2010) 141909.
[7.9] N. V. Vostokov, Yu. N. Drozdov, Z. F. Krasil’nik, D. N. Lobanov, A. V. Novikov, A. N. Yablonskii, M. Stoffel, U. Denker, O. G. Schmidt, O. M. Gorbenko, I. P. Soshnikov. Phys. Solid State. 47 (2005) 26–29.
[7.10] D. V. Yurasov, Yu. N. Drozdov, Semiconductors. 42 (2008) 563–570.
[7.11] Yu. N. Drozdov, A. V. Novikov, M. V. Shaleev, D. V. Yurasov, Semiconductors. 44 (2010) 519–524.
[7.12] D. N. Lobanov, A. V. Novikov, N.V. Vostokov, Y. N. Drozdov, A. N. Yablonskiy, Z. F. Krasilnik, M. Stoffel, U. Denker, O. G. Schmidt, Optical Materials. 27 (2005) 818-821.
[7.13] P. E. Hopkins, J. C. Duda, C. W. Petz, J. A. Floro, Phys. Rev. B 84 (2011) 035438.
[7.14] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A. M. Bittner, J. Tersoff, U. Denker, O. G. Schmidt, G. Costantini, K. Kern, Surf. Sci. 600 (2006) 2608.
[7.15] S. W. Lee , H. T. Chang , C. H. Lee , S. L. Cheng , C. W. Liu, Thin Solid Films. 518 (2010) S196–S199.
[7.16] P. S. Chen, S. W. Lee, Y. H. Peng, C. W. Liu, and M. J. Tsai. Phys. Stat. Sol. 241 (2004) 3650–3655.
[7.17] S. W. Lee, H. T. Chang, J. K. Chang, S. L. Cheng, J. Electrochem. Soc.. 158 (2011) H1113-H1116.
[7.18] H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung, P. W. Li, and S. W. Lee. Appl. Phys. Lett. 102 (2013) 101902.
[7.19] D. V. Yurasov, Yu. N. Drozdov, M. V. Shaleev, and A. V. Novikov, Appl. Phys. Lett. 95 (2009) 151902.
[7.20] H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu. Appl. Phys. Lett. 66 (1995) 3024.
[7.21] G. Abstreitery, P. Schittenhelmy, C. Engely, E. Silveiray, A. Zrennery, D. Meertensz and W. Jager., Semicond. Sci. Tech. 11 (1996) 1521.
[7.22] U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N. Y. Jin-Phillipp, D. E. Jesson, and O. G. Schmidt, Phys. Rev. Lett. 94 (2005) 216103.
[7.23] A. V. Kolobov, K. Morita, K. M. Itoh, E. E. Haller, Appl. Phys. Lett. 81 (2002) 3855.
[7.24] G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, Natural Materials 9 (2010) 491.
[7.25] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier and A. Shakouri., Nano Lett. 9 (2009) 711.
Chapter 9
[9.1] G. Vastola, M. Grydlik, M. Brehm, T. Fromherz, G. Bauer, F. Boioli, L. Miglio, F. Montalenti, Phys. Rev. B 84 (2011) 155415.
[9.2] A. Rastelli, O. G. Schmidt, G. Bauer, Appl. Phys. Lett., 97 (2010) 203103.
[9.3] J. J. Zhang, N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schaffler, O. G. Schmidt, G. Bauer, Appl. Phys. Lett., 96 (2010) 193101.
[9.4] J. J. Zhang, F. Montalenti, A. Rastelli, N. Hrauda, D. Scopece, H. Groiss, J. Stangl, F. Pezzoli, F. Schäffler, O. G. Schmidt, L. Miglio, and G. Bauer, Phys. Rev. Lett, 105 (2010) 166102.
[9.5] J. Zhang, A. Rastelli, O. G. Schmidt, G. Bauer, Phys. Status Solidi, B 249 (2012) 752.
[9.6] M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, Appl. Phys. Lett.,101 (2012) 151601.
[9.7] D. V. Yurasov,a Yu. N. Drozdov, M. V. Shaleev, A. V. Novikov, Appl. Phys. Lett., 95 (2009) 151902.
[9.8] A. I. Yakimov, A. I. Nikiforov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. V. Dvurechenskii, Semicond. Sci. Technol, 26 (2011) 085018.
[9.9] J. Tang, H. T. Wang, D. H. Lee , M. Fardy, Z. Huo, T. P. Russell , P. Yang, Nano Lett. , 10 (2010) 4279.
[9.10] S. W. Lee, B. L. Wu, H. T. Chang, J. Electrochem. Soc., 157 (2010) H174.
[9.11] P. E. Hopkins, J. C. Duda, C. W. Petz, J. A. Floro, Phys. Rev. B, 84 (2011) 035438.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2013-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明