博碩士論文 984201005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.206.12.79
姓名 翁聖強(Sheng-Chiang Weng)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 美國軟體產業創新活動與財務效率分析
(An efficiency analysis of innovation activity and financial performance of U.S. computer software companies)
相關論文
★ Performance Measurements of Web 2.0, Social Media, and Mobile Apps for Municipal Emergency Management★ 中國大陸股權結構與自願性財務預測之關聯性
★ 我國半導體產業下游公司法人說明會對供應鏈上游公司投資現金流量敏感度的影響★ 線上串流音樂服務之使用者抗拒意圖研究
★ 從認知理論探討創業機會辨識對績效之影響★ 影響Y世代消費者對智慧綠色產品購買意圖與使用意圖的因素:以智慧節能裝置為例
★ Application of social media mining on the comparison between two-dimensional barcode and near field communication★ 應用社群探勘技術分析城市之創業精神與新創公司的特性
★ 科技接受度與學習風格對於頭戴式虛擬實境應用在學習行為意圖的影響★ 電子發票巨量資料視覺化分析-以酒的消費為例
★ 應用文字探勘分析ERP之趨勢發展:以Twitter為例★ 社群媒體文字採礦之研究:以第三方物流公司為例
★ 應用文字探勘技術分析遊戲產業趨勢:以兩大遊戲展之相關推文為例★ 台灣有機食品消費與疾病死亡率之視覺化分析
★ 酒類消費與犯罪率之視覺化分析★ 零售業粉絲專頁分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過去數十年來,伴隨著資通訊產業的快速發展,創新活動逐漸成為了加強競爭優勢的重要來源。因此,對於科技公司而言,評估創新相關的生產力也逐漸成為了當今重要的課題,且由於軟體產業被視為典型的科技產業,因此創新活動的評估,對於軟體公司更形重要。 本研究使用資料包絡法(Data envelopment analysis)評估八家美國軟體公司在創新活動與將創新產出轉換成財務績效上的效率,同時,對於兩效率之間的關係也將進一步檢驗。此外,本研究亦使用麥氏生產力指數(Malmquist Productivity Index)從整體產業與公司的層面評估跨期的效率變動。本研究的主要發現指出:在創新效率與財務效率上有效率之公司與無效率公司之間存在高度的差異性;大部分公司在創新效率上表現優於財務效率;美國軟體產業在創新上的整體效率在2003-2005呈現進步但在2005-2007退步;美國軟體產業在2003-2007的財務效率上呈現大幅的進步。
摘要(英) Innovation activities have become an important source to enhance competitive advantages with rapid development of information and commutation technology over past decades. Thus, measuring the productivity with respect to innovation for technology-based firms becomes a crucial issue nowadays. Especially, it is critical for software industry because this industry is conventionally viewed as a typical technology-based sector. To further understand the innovation insights of the software industry, this study not only assessed the innovation efficiency of eight major U.S. software firms but also investigated how their innovation outputs were transferred into financial performance (financial efficiency) by using the approach of data envelopment analysis . The relationship between innovation efficiency and financial efficiency is also examined in this study. In addition, Malmquist Productivity Index (MPI) was employed to analyze the efficiency change based on the scopes of industry and individual firm. Analysis results show that significant differences exist between efficient firms and non-efficient firms from the viewpoints of innovation efficiency and financial efficiency. Besides, most of companies were found to have better performance of innovation efficiency than financial efficiency. The findings of MPI show that U.S. software industry made productivity improvements during the periods of 2003-2004 and 2004-2005. However, their MPI performances showed reversals during the periods of 2005-2006 and 2006-2007. Generally speaking, U.S. software firms substantially made improvements in transferring innovation outputs to financial performance during 2003-2007 from the viewpoint of MPI.
關鍵字(中) ★ 資料包絡法
★ 專利分析
★ 創新績效
★ 軟體產業
關鍵字(英) ★ data envelopment analysis
★ innovation performance
★ patent analysis
★ software industry
論文目次 中文摘要.............................................................................................i
ABSTRACT........................................................................................ii
誌謝...................................................iii
Table of Contents......................................iv
List of Figures........................................v
List of Tables.........................................vi
Chapter 1 Introduction.................................1
1.1 Research Background and Motivation.................1
1.2 Research objectives................................4
Chapter 2 Literature Review............................5
Chapter 3 Methodology..................................9
3.1 Two-stage Framework of Efficiency Evaluation.......9
3.2 DEA Models.........................................13
3.3 Malmquist Productivity Index.......................16
3.4 Data Collection....................................18
Chapter4 Results.......................................21
4.1 DEA Analysis.......................................21
4.2 MPI Analysis.......................................26
Chapter 5 Conclusions..................................29
References.............................................31
List of Figures
Figure 1-1: The number of software granted between 1976 and 2002………………………2。
Figure 3-1: Two-stage Framework……………………………………………………….....12。
Figure 4-1: Trends in inputs and outputs of innovation efficiency model………………….27。
List of Tables
Table 3-1: List of selected company………………………….…………………….………18。
Table 3-2: The descriptive statistics of selected inputs and outputs classified by years….. 19。
Table 3-3: Correlation coefficient among inputs and outputs...............................................20。
Table 3-4 Measurements of innovation efficiency model and financial efficiency model...20。
Table 4-1: Efficiencies of innovation activity and returns to scale……………………...…20。
Table 4-2:The mean projected percentages for inefficient firms in innovation efficiency...23。
Table 4-3: Efficiencies of financial model and returns to scale……………………………24。
Table 4-4: projected percentages for inefficient firms in financial efficiency model .....25。
Table 4-5: MPI of innovation efficiency model………..…………………….………….…27。
Table 4-6: MPI of financial efficiency model……………………………………………...28。
參考文獻 Abraham, S. E. (2009). Software patents in the United State: A Balanced approach. Computer Law and Security Review, 25(6), 544-562.
Banker, R.D., Charnes, A. & Cooper, W.W. (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.
Bessen, J., & Hunt, R. M. (2007). An Empirical Look at Software Patents. Journal of Economics & Management Strategy, 16(1), 157-189.
Chabchoub, N., & Niosi, J. (2005). Explaining the propensity to patent computer software. Technovation, 25(9), 971-978.
Charnes, A. ,Cooper, W.W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research,2 (6), 429–444.
Chen, Y., & Ali, A. I. (2004). DEA Malmquist productivity measure: New insights with an application to computer industry. European Journal of Operation Research, 159(1), 239-249.
Cohen, J.E., & Lemley, M.A. (2001). Patent scope and innovation in the software industry. California Law Review, 89 (1), 1–57.
Comaner, W. S., & Scherer, F.H. (1969). Patent statistics as a measure of technical change. Journal of political Economy, 77, 392-398.
Cortright, J., & Mayer, H. (2001). High Tech Specialization: A Comparison of High Technology Centres (Survey Services series). Washington, D.C., The Brookings Institution .
Diaz-Balteiro, L., Herruzo, A. C., Martinez, M. & Gonza′lez-Pacho′n, J. (2006). An analysis of productive efficiency and innovation activity using DEA: An application to Spain’s wood-based industry. Forest Policy and Economics, 8(7), 762 -773.
Encaoua, D., Guellec, D., & Martinez, C. (2006). Patent systems for encouraging innovation: lessons from economic analysis. Research Policy, 35(9) , 1423-1440.
Ernest, H. (1995). Patenting strategies in the German mechanical engineering industry and their relationship to firm performance. Technovation, 15(4), 225-240.
Ernest, H. (2001). Patent applications and subsequent changes of performance: evidence from time-series cross-section analyses on the firm level. Research Policy, 30(1), 143-157.
Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review 84 (1), 66–83.
Farrell, M.J. (1957). The measurement of productive efficiency, Journal of the Royal Statistical Society,120, 253-281.
Ghosh, S. & Mondal, A. (2009). Indian software and pharmaceutical sector IC and financial performance. Journal of Intellectual Capital, 10(3), 369 – 388
Golany, B. & Roll, Y (1989). An application procedure for DEA. Omega, 17(3), 237-250.
Graham, S., & Mowery, D. C. (2004, April). Software Patents: Good News or Bad News?. Paper presented at the meeting of Intellectual Property Rights in Frontier Industries, Washington, D.C..
Griliches, Z. (1981). Market Value, R&D, and Patents. Economics Letters, 7(2), 183-187.
Griliches, Z. (1986). Productivity, R&D, and basic research at the firm level in the 1970’s. American Economic Review, 76, 141–154.
Griliches, Z. (1990). Patent Statistics as Economic Indicators: A Survey. Journal of Economic Literature, 28(4), 1667-1707.
Hall, Bronwyn H., Griliches, Z. & Hausman. J.A. (1986). Patents and R&D: Is There A Lag?. International Economic Review, 27(2), 265-284.
Hall, L. A., & Bagchi-Sen, S. (2002). A study of R&D, innovation, and business performance in the Canadian biotechnology industry. Technovation, 22, 231-244.
Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market and patent citations. Rand Journal of Economics, 36(1), 16-38.
Hall, B. H., & MacGarvie, M. (2010). The private value of software patents. Research Policy, 39(7), 994-1009.
Hashimoto, A. & Haneda, S. (2008).Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Research Policy, 37(10) , 1829-1836.
Lerner, J., & Zhu, F. (2007). What is the impact of software patent shifts? Evidence from Lotus v. Borland. International Journal of Industrial Organization, 25(3), 511-529.
McQueen, D. H. (2005). Growth of software related patents in different countries . Technovation, 25(6), 657-671.
Meliciani, V. (2000).The relationship between R&D, investment and patents: a panel data analysis. Applied Economics, 34(11), 1429 -1437.
Narin, F., Noma, E., & Perry R. (1987). Patents as indicators of corporate technological strength. Research Policy, 16(2-4), 143-155.
Olsson, H., & McQueen, D. H. (2000). Factors influencing patenting in small software producing companies. Technovation, 20(10), 563-576.
Pakes, A., & Griliches, Z. (1980). Patents and R&D at the Firm Level: A First Look. Economics Letters, 5(4), 377-381.
Scherer, F.M. (1965). Corporate inventive output, profits and. growth. The Journal of Political Economy, 73(3), 290–297.
Suh, D., Hwang, J., & Oh, D. (2008, October). Do Software Intellectual Property Rights Affect the Performance of Firms? Case Study of South Korea. Paper presented at the meeting of The Third international conference on Software Engineering Advanced, Sliema, Malta.
Suh, D., & Hwang, J. (2010). An analysis of the effect of software intellectual property rights on the performance of software firms in South Korea. Technovation, 30(5-6), 376-385.
Thornhill, S. (2006). Knowledge, innovation and firm performance in high- and low-technology regimes. Journal of Business Venturing, 21, 687-703 .
Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. Rand Journal of Economics,21(1),172-187.
Wang, E. C. & Hung, W. (2007). Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach. Research Policy, 36(2) , 260-273.
Zhang, A., Zhang, Y. & Zhao, R. (2003). A study of the R&D efficiency and productivity of Chinese firms. Journal of Comparative Economics, 31(3), 444 -464.
Zhong, W., Yuan, W., Li, S. X., & Huang, Z. (2011). The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data. Omega, 39, 447 - 455.
指導教授 沈建文(Chien-wen Shen) 審核日期 2012-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明