博碩士論文 985201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.191.31
姓名 林于盛(Yu-sheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧型同動控制之龍門式定位平台及應用
(Intelligent Synchronous Control for Gantry Position Stage and Its Application)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
★ 多重地網系統之人身安全驗證與模擬★ 利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究
★ 具主動功因調節之LED驅動器研製★ 應用於輕型電動車之智慧型錯誤容忍控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究的目的是研製與發展以數位訊號處理器為基礎之智慧型同動控制系統,以達到龍門式定位平台各軸的精密定位控制與雙線性馬達間有效的同動控制與強健性之目的。本論文採用的龍門式定位平台是由三台永磁線型同步馬達所組成的。龍門式定位平台的機構特點,為利用雙平行線性馬達來驅動單一運動軸以增加驅動推力,即具有機構耦合之雙線性馬達,因此雙線性馬達間的同動控制便成為龍門式定位平台控制的重大課題。由於雙軸間的機構耦合效應所產生的同動誤差會造成控制性能的下降,因此本論文首先針對龍門式定位平台推導了以Lagrangian方程式為基礎之三自由度龍門動態模型。接著為了使龍門式精密定位平台能在參數變化、摩擦力、外來干擾與多軸系統中交叉耦合干擾的影響下具備強健之控制性能,本論文提出了以下兩種智慧型同動控制系統:以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊類神經網路控制系統和以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動模態控制系統,利用智慧型控制的線上學習能力與快速收斂特性來達到各軸的精密定位控制與雙線性馬達間有效的同動控制與強健性之特點。而所提出的兩種智慧型同動控制系統皆實現於以32位元浮點數運算的數位訊號處理器TMS320VC33。最後由實作結果加以驗證所設計的控制器之有效性與可行性。
摘要(英) The objective of this thesis is to develop and implement digital signal processor (DSP) based intelligent synchronous control systems for a gantry position stage, which is composed of three permanent magnet linear synchronous motors (PMLSMs), to achieve precision position control for each motor and effective synchronous control for dual linear motors with robustness. In the configuration of the gantry position stage, two parallel linear motors are physically coupled with a mechanism to realize one-degree movement to enhance the driving force. Hence, the synchronous control of the dual linear motors has become a challenge in the gantry position stages. In this thesis, to consider the effect of inter-axis mechanical coupling which degenerates control performance and results in synchronous error, a Lagrangian equation based three-degree-of-freedom (3-DOF) dynamic model for gantry position stage are derived. Moreover, the control accuracy is much influenced by the existence of uncertainties, which usually comprises parameter variations, external disturbances, cross-coupled interference and friction force. Therefore, two intelligent synchronous control systems with on-line learning capability, fast convergence and robust control characteristics to achieve precision position control for each motor and effective synchronous control for dual linear motors are proposed: a 3-DOF dynamic model based interval type-2 recurrent fuzzy neural network (IT2RFNN) control system and a 3-DOF dynamic model based intelligent non-singular terminal sliding mode control (INTSMC) system. Furthermore, the proposed intelligent synchronous control approaches are implemented in a control computer which is based on a 32-bit floating-point DSP, TMS320VC33. Finally, some experimental results are illustrated to show the validity of the proposed intelligent synchronous control approaches.
關鍵字(中) ★ 第二型區間遞迴式模糊類神經網路
★ 雙線性馬達
★ 無奇點終端滑動模態控制
★ 龍門式定位平台
★ 同動控制
關鍵字(英) ★ Non-singular terminal sliding mode control
★ Synchronous control
★ Dual linear motors
★ Interval type-2 recurrent fuzzy neural network
★ Gantry position stage
論文目次 目 錄
中文摘要...............................................................................................................I
英文摘要............................................................................................................. II
誌謝....................................................................................................................IV
目錄..................................................................................................................... V
圖目錄............................................................................................................. VIII
表目錄............................................................................................................. XIII
第一章 緒論...................................................................................................... 1
1.1 研究動機與目的........................................................................... 1
1.2 文獻回顧....................................................................................... 3
1.3 論文大綱....................................................................................... 9
第二章 以浮點運算數位訊號處理器為基礎之龍門式定位平台控制系統11
2.1 永磁線型同步馬達之基本介紹................................................. 11
2.2 單軸永磁線型同步馬達之工作原理........................................ 14
2.2.1 電壓方程式....................................................................... 14
2.2.2 作用力方程式................................................................... 17
2.3 單軸永磁線型同步馬達之驅動系統........................................ 20
2.4 STC-VC33 單板控制電腦及介面............................................. 20
2.4.1 STC- VC33 單板控制電腦之簡介................................ 21
2.4.2 STC-VC3 單板控制電腦之功能................................... 23
2.4.3 STC-6EN 擴充模組........................................................ 24
2.5 以浮點運算數位訊號處理器為基礎之龍門式定位平臺控制
系統............................................................................................. 25
2.6 龍門式三軸精密運動控制系統機械參數之鑑別.................... 26
2.7 龍門式定位平臺控制系統之軟體發展流程介紹.................... 30
2.8 印刷電路板之金屬焊點檢測系統架構.................................... 31
2.8.1 鏡頭................................................................................... 31
2.8.2 光源................................................................................... 31
2.8.3 影像擷取卡....................................................................... 32
2.8.4 影像處理軟體................................................................... 32
第三章 以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊類神
經網路控制系統................................................................................ 33
3.1 簡介............................................................................................. 33
3.2 三自由度龍門動態模型............................................................. 34
3.2.1 龍門式精密定位平臺簡介............................................... 34
3.2.2 以Lagrangian 方程式為基礎之三自由度龍門動態模
型...................................................................................... 35
3.3 第二型區間遞迴式模糊類神經網路........................................ 38
3.4 以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊
類神經網路控制系統................................................................. 45
3.5 實作結果..................................................................................... 52
第四章 以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動模態
控制系統............................................................................................ 76
4.1 簡介............................................................................................. 76
4.2 三自由度龍門動態模型............................................................. 77
4.3 以三自由度龍門動態模型為基礎之無奇點終端滑動模態控
制系統......................................................................................... 77
4.4 第二型區間遞迴式非對稱模糊類神經網路估測器................ 81
4.5 以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動
模態控制系統............................................................................. 87
4.6 實作結果..................................................................................... 93
4.7 應用於龍門式定位平台的以三自由度龍門動態模型為基礎之
智慧型同動控制器之結論與分析.......................................... 109
第五章 印刷電路板之金屬焊點瑕疵檢測.................................................. 113
5.1 影像前處理............................................................................... 113
5.1.1 灰階化............................................................................. 113
5.1.2 空間濾波......................................................................... 113
5.1.3 二值化影像..................................................................... 114
5.2 金屬焊點瑕疵檢測之實驗步驟與流程.................................. 114
5.3 實作結果................................................................................... 120
第六章 結論與未來研究方向...................................................................... 126
6.1 應用於龍門式定位平台的以三自由度龍門動態模型為基礎
之智慧型同動控制器之結論與分析...................................... 126
6.2 未來研究方向........................................................................... 127
6.2.1 控制架構......................................................................... 127
6.2.2 硬體架構......................................................................... 127
參考文獻.......................................................................................................... 129
作者簡歷.......................................................................................................... 135
參考文獻 [1] Y. Koren, “Cross-coupled biaxial computer control for manufacture systems,” ASME Journal of Dynamic System, Measurement, and Control, vol. 102, pp. 265-272, 1980.
[2] S. Kim, B. Chu, D. Hong, H. K. Park, J. M. Park and T. Y. Cho, “Synchronizing dual-drive gantry of chip mounter with LQR approach,” in Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 838-843, 2003.
[3] B. Chu, S. Kim, D. Hong, H. K. Park and J. Park, “Optimal cross-coupled synchronizing control of dual-drive gantry system for a SMD assembly machine,” JSME International Journal, Series C; Mechanical Systems, Machine Elements and Manufacturing, vol. 47, no. 3, pp. 939-945, 2004.
[4] FANUC, Parameter Manual of a-series AC Servo Motor. FANUC, 1994.
[5] SIEMENS, 840D/FM-NC Description of functions, special Functions (Part 3). SIEMENS, 1999.
[6] T. S. Giam, K. K. Tan and S. Huang, “Precision coordinated control of multi-axis gantry stages,” ISA Transactions, vol. 46, no. 3, pp. 399-409, 2007.
[7] C. S. Teo, K. K. Tan, S. Y. Lim, S. Huang and E. B. Tay, “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, vol. 17, no. 7, pp. 361-367, 2007.
[8] C. S. Teo, K. K. Tan and S. Y. Lim, “Dynamic geometric compensation for gantry stage using iterative learning control,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, pp. 413-419, 2008.
[9] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.
[10] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 449-507, 2005.
[11] S. C. Tan, Y. M. Lai and C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface,” IEEE Transactions on Industrial Electronics, vol. 23, no. 2, pp. 600-611, 2008.
[12] B. Beltran, T. Ahmed-Ali and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3314-3321, 2009.
[13] B. Veselic, B. Perunicic-Drazenovic and C. Milosavljevic, “Improved discrete-time sliding-mode position control using Euler velocity estimation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3840-3847, 2010.
[14] H. M. Chen, J. P. Su and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Transactions on Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[15] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” International Journal of Control, vol. 75, no. 5, pp. 360-368, 2002.
[16] H. M. Chen, J. C. Renn and J. P. Su, “Sliding mode control with varying boundary layers for an electro-hydraulic position servo system,” International Journal of Advanced Manufacturing Technology, vol. 26, pp. 117-123, 2005.
[17] M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,” IEEE Transactions on Circuits and Systems Part I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1065-1070, 1997.
[18] S. Yua, X. Yub, B. Shirinzadehc and Z. Mand, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no.11, pp. 1957-1964, 2005.
[19] Y. Feng, X. Yu and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no.12, pp. 2159-2167, 2002.
[20] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, 2006.
[21] C. W. Tao, J. S. Taur and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 255-262, 2004.
[22] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall Press, 1997.
[23] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3872-3879, 2009.
[24] T. Orlowska-Kowalska, M. Dybkowski and K.Szabat, “Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors,” IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 553-564, 2010.
[25] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 898-905, 2005.
[26] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1209-1225, 2006.
[27] F. J. Lin, P. H. Shieh and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
[28] A. Gajate, R. E. Haber, P. I. Vega and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process,” IEEE Transactions on Neural Networks, vol. 21, no. 7, pp. 1158-1167, 2010.
[29] C. C. Chuang, S. F. Su and S. S. Chen, “Robust TSK fuzzy modeling for function approximation with outliers,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 6, pp. 810-821, 2001.
[30] Y. Gao and M. Joo, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 462-477, 2003.
[31] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent fuzzy neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 5, pp. 2144-2154, 2004.
[32] I. B. Kucukdemiral and G. Cansever, “Formalization of a novel Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proceedings IEEE International Conference Mechatronics, pp.717-720, 2005.
[33] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I,” Information Sciences, vol. 8, no. 3, pp. 199-249, 1975.
[34] J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 117-127, 2002.
[35] J. M. Mendel, R. I. B. John and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808-821, 2006.
[36] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, 2001.
[37] N. N. Karmik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1-4, pp. 195-220, 2001.
[38] Q. Liang and J. M. Mendel, “Interval type-2 logic systems: theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 535-550, 2000.
[39] F. J. Lin, P. H. Chou, P. H. Shieh and S. Y. Chen “Robust control of LUSM based X-Y-Theta motion control stage using adaptive interval type-2 fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 24-38, 2009.
[40] C. F. Juang, R. B. Huang and Y. Y. Lin, “A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1092-1105, 2009.
[41] C. F. Juang, Y. Y. Lin and I. F. Chung, “Dynamic system identification using a Type-2 recurrent fuzzy neural network,” in Proceedings 7th Asian Control Conference, pp. 768-772, 2009.
[42] H. Y. Pan, C. H. Lee, F. K. Chang and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proceedings International Conference Machine Learning and Cybernetics, pp. 2024-2030, 2007.
[43] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric Gaussian membership functions,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1528-1536, 2004.
[44] C. H. Lee, T. W. Hu, C. T. Lee and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proceedings IEEE Conference Fuzzy Systems, pp. 1496-1502, 2008.
[45] F. Y. Chang and C. H. Lee, “Interval type-2 recurrent fuzzy neural system with asymmetric membership functions for chaotic system identification,” in Proceedings SICE Annual Conference, pp. 256-260, 2010.
[46] 蔡英男,應用影像處理與類神經網路於偏光膜瑕疵辨識,碩士論文,國立台灣科技大學高分子工程學系,台北,2003。
[47] 劉權霈,應用電腦視覺技術於PCB自動檢測系統之設計及開發,碩士論文,國立交通大學工業工程與管理學系,新竹,2001。
[48] 周柏寰,智慧型同動控制之龍門式定位平台,博士論文,國立東華大學電機工程學系,花蓮,2011。
[49] 周柏寰,利用強健性Sugeno型適應性模糊類神經網路控制之雙軸運動控制系統,碩士論文,國立東華大學電機工程學系,花蓮,2007。
[50] 史賓納科技股份有限公司,STC-VC33使用手冊,台北,2006。
[51] 游志祥,玻璃表面瑕疵檢測系統之開發,碩士論文,國立東華大學電機工程學系,花蓮,2009。
指導教授 林法正(Faa-jeng Lin) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明