博碩士論文 985201029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.17.28.48
姓名 林致賢(Chih-Hsien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多使用者多輸入輸出前編碼演算法及關鍵組件設計
(Design of MU-MIMO Precoding Algorithm and Essential Module)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 無線感測網路之定位追蹤演算法設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 考量數位家庭之服務模式具使用者多工(multiple access),並兼顧各使用者所需之高品質影音服務的資料量,本論文利用回傳的通道資訊來研究多使用者多輸入輸出前編碼技術,目的是減少接收端的複雜度,盡可能將複雜度移到傳送端,讓接收端有低成本、小面積、低功耗的好處。且因802.11ac、WiMax和3GPP LTE-Advanced都支援8×8MIMO技術,在硬體實現上以8根天線為考量。
本論文中演算法部分,我們提出了低複雜度之多使用者多輸入輸出前編碼演算法(MU- MIMO precoding),此演算法在支援之使用者數目愈多時,錯誤率之效能有愈好的表現,而此前編碼機制是利用QR分解和THP演算法為基礎,來消除使用者間與天線間之干擾源,再搭配Sorted QR分解和所提出的區塊能量分配(Proposed Bolck based PAL)機制,更進一步改善錯誤率之效能,藉由此能量分配機制,運算複雜度可大幅降低,而對系統性能卻只有些微影響。
在硬體實作方面則針對關鍵性模組—高吞吐量之8×8 Sorted QR分解—進行設計,最大特色為同時運算3個4×4 Sorted QR分解,並提供不同層數的排序功能。設計程序上,首先先評估QR分解演算法的運算量,且為了達到高傳輸率,在硬體實現上,選擇了Givens Rotation演算法,因其可藉由管線級CORDIC實現,同時,採用Systolic Array的硬體架構,來達到高吞吐量之目標,相較於先前的文獻,我們呈現了具有極佳之面積時間乘積之硬體效能之設計結果。
摘要(英) In future services of digital home, transmission of high-quality audio and video data to multiple users is a necessity. Multi-user MIMO precoding schemes that utilize the feedback of the channel state information to reduce either the receiver complexity or to enhance the system performance become attractive. Thus, consumers can have the benefits of low cost, small area, low power but high quality in the receiver. Due to the fact that the next-generation wireless systems such as 802.11ac, WiMax, and 3GPP LTE-Advanced all support 8×8 MIMO configuration, we aim to offer the design, in algorithm and architecture, for 8 antennas.
In this thesis, we propose a reduced-complexity multi-user MIMO precoding algorithm including sorted-QR decomposition, block-based power allocation, and THP algorithm. The proposed scheme outperforms other MU-MIMO precoding schemes when the system supposts more users. The sorted QRD and proposed power allocation are effective to improve the BER performance. In addition, our proposed power allocation further reduces complexity and has only slight BER degradation. Finally, the THP algorithm is adopted to cancel the interference in advance at transmitter.
As to the hardware implementation, we propose a scalable design of high throughput 8×8 Sorted QRD. It can compute three sets of 4×4 Sorted QRD simultaneously. Various numbers of sorting layers are supported. The Givens Rotation algorithm of the QRD is adopted for its merit in pipelining with the CORDIC operation. Finally, a hardware-efficient design with good AT product is shown.
關鍵字(中) ★ 前編碼機制
★ 排序QR分解
★ 多使用者多輸入多輸出系統
關鍵字(英) ★ SortedQR
★ Precoding
★ Multi-User MIMO
論文目次 目錄.................................................................................................... iv
圖示目錄................................................................................................ vii
表格目錄................................................................................................ xi
第一章 緒論............................................................................................ 1
1.1 簡介 ............................................................................................ 1
1.2 動機 ............................................................................................ 2
1.3 論文組織............................................................................................ 2
第二章 單一使用者多輸入多輸出(Single-User MIMO)系統..................................................... 3
2.1 介紹................................................................................................ 3
2.2 傳統的接收機........................................................................................ 5
2.2.1 強制歸零(Zero-Forcing, ZF)........................................................................ 5
2.2.2 最小均方誤差(Minimum Mean Square Error, MMSE)..................................................... 5
2.2.3 縱向貝爾實驗室分層時空編碼(Vertical Bell Laboratories Layered Space-Time, V-BLAST)................ 6
2.2.4 球面解碼(Sphere Decoder).......................................................................... 8
2.3 單一使用者多輸入多輸出前編碼(Single-User MIMO Precoding)............................................13
2.3.1 奇異值分解(Singular Value Decomposition, SVD).....................................................13
2.3.2 LU分解(LU decomposition, LUD)....................................................................14
2.3.3 幾何平均分解(Geometric Mean Decomposition, GMD)...................................................15
2.3.4 QR分解(QR decomposition, QRD)....................................................................18
2.3.4.1 Gram-Schmidt Algorithm..........................................................................19
2.3.4.2 Givens Rotation Algorithm.......................................................................20
第三章 多使用者多輸入輸出前編碼(Multi-User MIMO precoding)系統..........................................23
3.1 介紹................................................................................................23
3.2 傳統的方法..........................................................................................25
3.2.1 區塊對角化幾合平均分解法(Block-Diagonal GMD, BD-GMD)..............................................25
3.2.2 RBD...............................................................................................26
3.2.3 Dirty Paper Code..................................................................................27
3.2.4 Tomlinson-Harashima Precoding(THP)................................................................33
3.3 所提出的多使用者多輸入多輸出之前編碼(Proposed MU- MIMO Precoding)...................................35
3.3.1 排序QR分解(Sorted QR Decomposition, SQRD).........................................................38
3.4 提出的能量分配 (Proposed Power Allocation, PAL)機制.................................................39
3.4.1 相同率能量分配 (Equal Rate PAL)...................................................................40
3.4.2 錯誤率最佳化之能量分配 (BER Optimization PAL).....................................................41
3.4.3 提出的區塊能量分配 (Proposed Block-Based PAL).....................................................42
3.5 通道資訊回傳(Channel Feedback)之方法................................................................45
3.6 模擬與比較..........................................................................................46
第四章 硬體架構與實現...................................................................................50
4.1 硬體設計流程........................................................................................50
4.2 硬體複雜度評估......................................................................................51
4.2.1 CORDIC演算法介紹..................................................................................52
4.2.2 硬體複雜度之分析..................................................................................54
4.3 4×4 Sorted QRD硬體介紹..............................................................................58
4.3.1 CORDIC之硬體......................................................................................62
4.3.2 CORDIC Complex PE.................................................................................65
4.3.3 計算向量Norm值之單元..............................................................................67
4.3.4 計算剩餘向量Norm之值單元..........................................................................68
4.3.5 RAM / Register存取之控制單元......................................................................70
4.4 8×8 Sorted QRD硬體介紹..............................................................................84
4.5 決定CORDIC階數與Word Length.........................................................................84
4.6 使用其他接收機......................................................................................90
4.7 實現結果與比較......................................................................................92
4.8 硬體實現之模擬......................................................................................95
4.9 使用各收發機(Transceiver)運算複雜度之比較...........................................................101
第五章 結論.............................................................................................104
參考文獻................................................................................................105
參考文獻 [1] C. H. Liao, T. P. Wang, and T. D. Chiueh, "A 74.8 mW Soft-Output Detector IC for 8×8 Spatial-Multiplexing MIMO Communications Solid-State Circuits," IEEE Journals & Magazines, vol. 45, no. 2, pp. 411-421, Feb. 2010.
[2] K. Wong, C. Tsui, R. Cheng, and W. Mow, "A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels," in Proc. IEEE International Symposium on Circuits and Systems, vol. 3, pp. 273-276, May 2002.
[3] M. Wenk and M. Zellweger, A. Burg, N. Felber, and W. Fichtner, "K-best MIMO detection VLSI architectures achieving up to 424Mbps," in Proc. IEEE International Symposium on Circuits and Systems, May 2006, pp.1151-1154.
[4] M. Shabany, and P. G. Gulak, "A 0.13μm CMOS 655Mbs, 64-QAM K-best MIMO Detector," IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp. 256-257, Feb. 2009.
[5] C. P. Wu, and J. M. Wu, "Low-complexity channel decomposition for spatial multiplexing MIMO system," IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, Jul. 2008, pp. 156-160.
[6] Y. Jiang, W. Hager, and J. Li, "The geometric mean decomposition," Linear Algebra and Its Applications, vol. 396, pp. 373-384, Feb. 2005.
[7] M.B. Shenouda and T.N. Davidson, "A framework for designing mimo systems with decision feedback equalization or tomlinson-harashima precoding," IEEE Journal on Selected Areas in Communications, vol. 26, no. 2, pp. 401-411, Feb. 2008.
[8] S. Lin, W. L. Ho, and Y. C. Liang, "Block-Diagonal Geometric Mean Decomposition (BD-GMD) for Multiuser MIMO Broadcast Channels," IEEE 17th International Symposium in Personal, Indoor and Mobile Radio Communications, 2006, pp. 1-5.
[9] M. Joham and W. Utschick, "Ordered Spatial Tomlinson Harashima Precoding. chapter 20," EURASIP, Hindawi Publishing Corporation, 2005.
[10] V. Stankovic, and M. Haardt, "Generalized Design of Multi-User MIMO Precoding Matrices," IEEE Transactions Wireless Communications, vol. 7, no. 3, pp. 953-961, Mar. 2008.
[11] Spencer, Q.H., Peel, C.B., Swindlehurst, A.L., and Haardt, M., "An introduction to the multi-user MIMO downlink," IEEE Communications Magazine, vol. 42, no. 10, pp. 60-67, Oct. 2004.
[12] M. Costa, "Writing on Dirty Paper," IEEE Transactions on Theory, vol. 29, May 1983, pp. 439–41.
[13] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, "A Vector-Perturbation Technique for Near-Capacity Multi-Antenna Multi-User Communication," IEEE Transactions on Communication, Jun. 2003.
[14] D. Wubben, R. Bohnke, J. Rinas,V. Kuhn, and K.D.Kammeyer, "Efficient algorithm for decoding layered spacetime codes," Electronics Letters, vol. 37, no. 22, pp. 1348-1350, Oct. 2001.
[15] N. Wang, and S. D. Blostein, "Approximate Minimum BER Power Allocation for MIMO Spatial Multiplexing Systems," IEEE Transactions Communications, vol. 55, no. 1, pp. 180-187, Jan. 2007.
[16] S. Zhou, and G. B. Giannakis, "Adaptive modulation for multi-antenna transmissions with channel mean feedback," in Proc. IEEE ICC, vol. 4, pp. 2281-2285, May 2003.
[17] J. L. Tzeng, C. J. Huang, H. P. Ma, and P. Ting, "A high performance low complexity joint transceiver design for MIMO communications," ChinaCOM. pp. 1-5, 2009.
[18] J. L. Tzeng, C. J. Huang, Y. H. Yuan, and H. P. Ma, "A high performance low complexity joint transceiver for closed-loop MIMO applications," Design Automation Conference (ASP-DAC), pp. 381-382, 2010.
[19] Q. Li, X. E. Lin, A. Poon, M. Ho, N. Himayat, and S. Talwar, "Improved Feedback for MIMO Precoding," IEEE 802.16 Broadband Wireless Access Working Group.
[20] C.Z. Zhan, K.Y. Jheng, Y.L. Chen, T.J. Jheng, and A.Y. Wu, "High-convergence-speed low-computation- complexity SVD algorithm for MIMO-OFDM systems," International Symposium on VLSI Design, Automation and Test, pp. 195-198, 2009.
[21] Z. Y. Huang, and P. Y. Tsai, "Efficient Implementation of QR Decomposition for Gigabit MIMO-OFDM Systems," Circuits and Systems I: Regular Papers, IEEE Transactions, vol. 58, no. 10, pp. 2531-2542, Oct. 2011.
[22] J. Y. Wang, R. H. Lai, C. M. Clien, P. A. Ting, and Y. H. Huang, "A 2×2–8×8 sorted QR decomposition processor for MIMO detection," Solid State Circuits Conference (A-SSCC), IEEE Asian, pp.1-4, 2010.
[23] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner,"VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition," in Proc. IEEE International Symposium on Circuits and Systems, pp. 1421-1424, May 2007.
[24] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and W. Fichtner, "Gram-Schmidt-based QR decomposition for MIMO detection:VLSI implementation and comparison," IEEE Asia Pacific Conference , pp. 830-833, Dec. 2008.
[25] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev, "Triangular systolic array with reduced latency for QRdecomposition of complex matrices," in Proc. IEEE International Symposium on Circuits and Systems, pp.385-388, May 2006.
[26] Z. Y. Huang, "High-Throughput QR Decomposition for MIMO Detection in OFDM Systems," master thesis, National Central University, Dec. 2010.
[27] H. C. Lin, "A 4×4 MIMO Detector for IEEE 802.11n Systems," master thesis, National Central University, Jul. 2009.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明