博碩士論文 985201053 詳細資訊


姓名 柯宗佑(Tsung-Yu Ke)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具快速逆向回復時間之矽基600伏氮化鋁鎵/氮化鎵蕭基二極體
(A 600V AlGaN/GaN Schottky Barrier Diode(SBD)on Si Substrate with Fast Reverse Recovery Time)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用2 μm的緩衝層將氮化鎵鋁/氮化鎵異質接面層成長於4英吋p型的Si(111)基板上,成功製作出平面式氮化鎵鋁/氮化鎵蕭基二極體。
藉由原子力顯微鏡量測氮化鎵薄膜成長於矽基板的蝕刻孔洞密度(EPD)大約是1.92×109 cm-2;針對氮化鎵成長於Si(111)基板上,我們利用x-ray量測其GaN(002)反射面的繞射轉動曲線,可得到半波高全寬值(FWHM)為536 arc-sec,影響螺旋缺陷密度與材料中漏電流的多寡;最後經由試片的霍爾量測,氮化鎵鋁/氮化鎵異質接面通道的遷移率為1430 cm2 /V-s、片載子密度為9.8?1012 cm-2。
氮化鎵鋁/氮化鎵蕭基二極體元件的製作,歐姆電極的金屬利用鈦/鋁/鎳/金、蕭特基電極利用鎳/金,元件設計方式將歐姆電極等距離的沉積在蕭特基電極的兩邊,針對蕭特基到歐姆電極之間的距離(LGS)以10 ~ 30 μm的改變進行研究討論。對於LGS = 10 μm的元件可量測到特徵開啟電阻(RON)為1.3 mΩ-cm2、電流密度達100 A/cm2下的順偏開啟電壓為1.4 V,元件在沒有任何邊緣終端設計的製作下,於室溫量測下的逆偏崩潰電壓(VB)可高於600 V以上,但元件量測到的崩潰變壓值並沒有隨著LGS的改變而呈現線性的變化,原因在於基板磊晶結構的緩衝層中。評量因子定義為(VB)2/RON,計算後為277 MWcm-2,製程元件在無封裝的環境下量測其開關特性,順偏電流密度大小為720 A/cm2 (總輸入電流大小為1 A)、瞬間以100 A/μs的斜率遞減將元件操作至逆偏30 V後關閉,過程中量測其逆向回復時間小於10 ns。
摘要(英) Lateral AlGaN/GaN Schottky Barrier Diodes (SBDs) on Si substrate have been fabricated and characterized. AlGaN/GaN hetero-junction layers were grown on 4-inch p-type Si (111) substrate with 2 ?m buffer layer.
The measurement of etching pit density (EPD) of GaN films on Si substrate is about 1.92×109 cm-2 by atomic force microscopy (AFM). The full width at half maximum value (FWHM) of x-ray diffraction rocking curve for the GaN film on Si (111) substrate is 536 arc-sec (002 reflection), which is related to the screw type dislocation and resulted leakage current. The Hall measurement showed the mobility of 1430 cm2 /V-s with a sheet carrier density of 9.8?1012 cm-2 for the AlGaN/GaN structure across the wafer.
The AlGaN/GaN SBDs were implemented by Ti/Al/Ni/Au Ohmic and Ni/Au Schottky contacts. The Ohmic contacts were deposited on both side of Schottky contact with equal distance. The Schottky-to-Ohmic contact distance (LGS) was varied from 10 to 30 ?m in this study. The specific on-state resistance (RON) was 1.3 m?-cm2, while the forward turn-on voltage was 1.4 V at the current density of 100 A/cm2 for device with LGS = 10 ?m. The measured reverse breakdown voltage (VB) at room temperature was up to 600 V without edge terminal scheme. The measured VB is not function of LGS, which mainly depends on the buffer layer structure.
The figure-of-merit is defined (VB)2/RON, that was 277 MWcm-2. And reverse recovery time was < 10 ns for device (without package) switched from a forward current density of ~720 A/cm2 (1 A) to a reverse bias of 30 V with di/dt of 100 A/?s.
關鍵字(中) ★ 氮化鎵
★ 氮化鎵鋁
★ 蕭基二極體
★ 逆向回復時間
關鍵字(英) ★ reverse recovery time
★ GaN
★ AlGaN
★ Schottky barrier diode
論文目次 摘要…… IV
Abstract.. ………………………………………………………………………………V
致謝........ VI
圖目錄… IX
表目錄… XII
第一章 緒論 1
1.1前言 1
1.2 AlGaN/GaN Schottky Barrier Diode 市場發展與應用 2
1.3 AlGaN/GaN Schottky Barrier Diode 國內外相關研究成果 4
1.4本實驗研究動機與目的 7
1.5 論文架構 9
第二章 氮化鎵磊晶於矽基板材料之結構分析 10
與元件製程 10
2.1前言 10
2.2磊晶材料特性分析 10
2.2.1成長於矽基板之氮化鎵鋁/氮化鎵試片 10
2.2.2磊晶試片差排缺陷密度量測與分析 11
2.2.3 X光繞射儀量測分析氮化鎵磊晶品質 14
2.2.4 Hall measurement分析試片的通道特性 15
2.2.5歐姆接觸的製作與量測 16
2.3 AlGaN/GaN Schottky Barrier Diode 製程步驟 18
2.4 結論 23
第三章 AlGaN/GaN Schottky Barrier Diode 24
3.1前言 24
3.2順向低導通電阻與低開啟電壓 24
3.2.1順向電流-電壓特性 24
3.2.2位障高度的量測 35
3.2.3理想因子的分析 38
3.3逆向高崩潰電壓與漏電流分析 42
3.3.1元件逆偏高崩潰特性 42
3.3.2元件故障之分析 44
3.4藉由電容-電壓量測探討製程後元件的通道特性 47
3.4.1 AlGaN/GaN SBDs電容-電壓特性介紹 47
3.4.2 AlGaN/GaN SBDs電容-電壓量測分析 47
3.4.3元件通道內載子濃度與空乏深度的探討 51
3.4元件在變溫下特性之改變 54
3.6具有快速開關特性之蕭基特二極體 56
3.6.1快速回復二極體介紹 56
3.6.2 AlGaN/GaN SBDs逆向回復特性 56
3.6.3 AlGaN/GaN SBDs逆向回復特性分析與討論 61
3.7 結論 62
第四章 結論 63
4.1結論 63
4.2 未來展望 64
參考文獻 65
附錄 口試問題回答 69
參考文獻 [1] Chow T. Paul and Tyagi Ritu, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," IEEE Transactions on Electron Devices, vol. 41, pp. 1481-1483, 1998.
[2] M. Trivedi and K. Shenai, "Performance evaluation of high-power wide band-gap semiconductor rectifiers," Journal of Applied Physics, vol. 85, pp. 6889-6897, 1999.
[3] K. Takatani, et al., "AIGaN/GaN Schottky-ohmic combined anode field effect diode with fluoride-based plasma treatment," Electronics Letters, vol. 44, pp. 320-321, 2008.
[4] G. D. A. P. Zhang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, X. A. Cao, and S. J. Pearton "Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers," Applied Physics Letters, vol. 76, p. 1767, 2000.
[5] G. D. A. P. Zhang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, H.Cho and S. J. Pearton, "Temperature dependence and current transport mechanisms in AlxGa1−xN Schottky rectifiers," Applied Physics Letters, vol. 76, p. 3816, 2000.
[6] A. P. Zhang, et al., "Lateral AlxGa1−xN power rectifiers with 9.7 kV reverse breakdown voltage," Applied Physics Letters, vol. 78, p. 823, 2001.
[7] Y. Zhou, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[8] J.-C. H. Seung-Chul Lee, Soo-Seong Kim, Min-Woo Ha, Kwang-Seok Seo, Yeam-Ik Choi and Min-Koo Han, "A New Vertical GaN Schottky Barrier Diode with Floating Metal Ring for High Breakdown Voltage," IEEE International Symposium on Power Semiconductor Devices & ICs, pp. 319-322, 2004.
[9] L. Voss, et al., "Characterization of bulk GaN rectifiers for hydrogen gas sensing," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 23, p. 2373, 2005.
[10] A. P. Z. Gerard T. Dang, Fan Ren, Xianan A. Cao, Stephen J. Pearton, Hyun Cho, Jung Han, Jenn-Inn Chyi, C.-M. Lee, C.-C. Chuo, S. N. George Chu, and Robert G. Wilson, "High Voltage GaN Schottky Rectifiers," IEEE Transactions on Electron Devices, vol. 47, pp. 692-696, 2000.
[11] B. S. Kang, et al., "Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 710, 2004.
[12] L. Seung-Chul, et al., "High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction," IEEE International Symposium on Power Semiconductor Devices & ICs, pp. 247-250, 2005.
[13] C. Young-Hwan, et al., "High voltage AlGaN/GaN Schottky barrier diode employing the inductively coupled plasma-chemical vapor deposition SiO2 passivation," Internatonal Conference on Power Electronics, pp. 71-73, 2007.
[14] A. Kamada, et al., "High-Voltage AlGaN/GaN Schottky Barrier Diodes on Si Substrate with Low-Temperature GaN Cap Layer for Edge Termination," IEEE International Symposium on Power Semiconductor Devices & ICs, pp. 225-228, 2008.
[15] K. H. Baik, et al., "160-A bulk GaN Schottky diode array," Applied Physics Letters, vol. 83, pp. 3192-3194, 2003.
[16] H. Ishida, et al., "Unlimited High Breakdown Voltage by Natural Super Junction of Polarized Semiconductor," IEEE Electron Device Letters,vol. 29, pp. 1087-1089, 2008.
[17] C. Kyu-Heon, et al., "Increase of Breakdown Voltage on AlGaN/GaN HEMTs by Employing Proton Implantation," IEEE Transactions on Electron Devices, vol. 56, pp. 365-369, 2009.
[18] C. Kyu Heon, et al., "Channel modulated AlGaN/GaN HEMTs employing fluoride plasma treatment," IEEE Power Electronics Specialists Conference, pp. 2172-2176, 2008.
[19] P. Srivastava, et al., "Silicon Substrate Removal of GaN DHFETs for Enhanced (1100 V) Breakdown Voltage," IEEE Electron Device Letters, vol. 31, pp. 851-853, 2010.
[20] P. Srivastava, et al., "Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2 μm Buffer Thickness by Local Substrate Removal," IEEE Electron Device Letters, vol. 32, pp. 30-32, 2011.
[21] 黃文賓, "氮化鎵高電壓蕭特基二極體之製作," 碩士論文, 國立中央大學, 2006.
[22] 張育榮, "場效電板氮化鋁鎵/氮化鎵高電子移導率電晶體知製作與應用," 碩士論文, 國立中央大學, 2005.
[23] 林佩瑩, "高崩潰電壓氮化鋁鎵/氮化鎵蕭基二極體之特性分析," 碩士論文, 國立中央大學, 2010.
[24] Y. Dora, et al., "High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates," IEEE Electron Device Letters, vol. 27, pp. 713-715, 2006.
[25] H. Ishida, et al., "GaN-based natural super junction diodes with multi-channel structures," IEEE International Electron Devices Meeting, pp. 1-4, 2008.
[26] 游承儒, "高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析," 碩士論文, 國立清華大學, 2010.
[27] 徐廷鋐, "利用氟離子電漿處理製作出高效能增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體," 碩士論文, 國立交通大學, 2009.
[28] N. Ikeda, et al., "High-power AlGaN/GaN HFETs on Si substrates," International Power Electronics Conference, pp. 1018-1022, 2010.
[29] L. Bin, et al., "Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate," in Device Research Conference, pp. 193-194, 2010.
[30] L. Bin and T. Palacios, "High Breakdown (1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology," IEEE Electron Device Letters, vol. 31, pp. 951-953, 2010.
[31] J. W. P. Hsu, et al., "Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates," Applied Physics Letters, vol. 81, pp. 79-81, 2002.
[32] W. Saito, et al., "Effect of Buffer Layer Structure on Drain Leakage Current and Current Collapse Phenomena in High-Voltage GaN-HEMTs," IEEE Transactions on Electron Devices, vol. 56, pp. 1371-1376, 2009.
[33] K. Radhakrishnan, et al., "Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy," Applied Physics Letters, vol. 97, pp. 232107-232107-3, 2010.
[34] V. D. Pauw, "A method of measuring specific resistivity and Hallcffect of discs of arbitrary shape," Philips Technical Review, vol. 20, pp. 220–224, 1958.
[35] 施敏, "Physics of Semiconductor Devices," 國立交通大學, Third edition, 2008.
[36] Y. Zhou, et al., "Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery," Applied Physics Letters, vol. 88, pp. 113509-113509-3, 2006.
[37] J. W. Johnson, et al., "Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers," IEEE Transactions on Electron Devices, vol. 49, pp. 32-36, 2002.
[38] N. Ikeda, et al., "High power AlGaN/GaN HFET with a high breakdown voltage of over 1.8 kV on 4 inch Si substrates and the suppression of current collapse," IEEE International Symposium on Power Semiconductor Devices and IC's, pp. 287-290, 2008.
[39] K. P. Schoen, et al., "Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers," IEEE Transactions on Electron Devices, vol. 45, pp. 1595-1604, 1998.
[40] O. Ambacher, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[41] O. Ambacher, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[42] Y. H. Chihoko Mizue, Marcin Miczek, and Tamotsu Hashizume, "State Density Capacitance Voltage Characteristics of Al2O3/AlGaN/GaN and State Density Distribution at Al2O3/AlGaN Interface," Japanese Journal of Applied Physics, vol. 50, 2011.
[43] Y. Irokawa, et al., "Current-voltage and reverse recovery characteristics of bulk GaN p-i-n rectifiers," Applied Physics Letters, vol. 83, pp. 2271-2273, 2003.
[44] B. S. Kang, et al., "Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, pp. 710-714, 2004.
[45] S. J. Rosner, et al., "Cathodoluminescence mapping of epitaxial lateral overgrowth in gallium nitride," Applied Physics Letters, vol. 74, pp. 2035-2037, 1999.
[46] S. J. Rosner, et al., "Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition," Applied Physics Letters, vol. 70, pp. 420-422, 1997.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2011-7-26

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡