博碩士論文 985201056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:13.59.72.129
姓名 李明師(Ming-Shih Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新穎奈米線穿隧式場效電晶體之技術開發
(Technology Development of Novel Naonwire Tunneling Field-Effect Transistor)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文整合一維複晶矽奈米線與PIN結構於一體,實作出奈米線穿隧式場效電晶體。期望能有效地改善金氧半場效電晶體的短通道效應、次臨限斜率與靜態漏電流。其關鍵製程簡述如下:利用側壁回蝕技術在陡直的平台側壁形成一維複晶矽奈米線,再藉由二次黃光微影製程分別對一維複晶矽奈米線進行P+ 和N+ 離子佈植形成PIN結構,進而實作出奈米線穿隧式場效電晶體。因此於變溫的電流-電壓曲線、次臨限斜率-溫度曲線以及導通電流-溫度曲線進行電性分析。
摘要(英) This thesis integrated one dimension poly-Si nanowire and PIN structure into a device, which fabricated nanowire tunneling field-effect transistor (NWT-FET). We are looking forward to improving short channel effects (SCE), subthreshold slope, (S.S.) and static leakage current (IOFF) in the metal oxide semiconductor field-effect transistor (MOS-FET). The key process of NWT-FET is described as follows: By using etched back technique, we can form one dimension poly-Si nanowire on steep mesa-sidewall. Then by using two photolithography processes, we can implant P+ and N+ on one dimension poly-Si nanowire, respectively, to form the PIN structure. Via the variable temperature measurement (300 K, 250 K, 200 K and 150 K), we experimental characterized the current-voltage (I-V), subthreshold slope-temperature (S.S.-Temp.) and on current-temperature (Ion-Temp.).
關鍵字(中) ★ 奈米線
★ PIN
★ 奈米線穿隧式場效電晶體
★ 次臨限斜率
★ 靜態漏電流
關鍵字(英) ★ Nanowire
★ PIN
★ Nanowire Tunneling Field-Effect Transistor
★ Subthreshold Slope
★ Static Leakage Current
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 V
圖目錄 VII
表目錄 XI
一、 緒論 1
1-1 研究的背景與動機 1
1-2 奈米線穿隧式場效電晶體的結構設計與製程考量 2
1-3 論文研究流程與架構 4
二、 奈米線穿隧式場效電晶體的操作原理 9
2-1 前言 9
2-2 穿隧理論 9
2-3 元件結構與對應的能帶圖 11
2-4 操作機制 12
2-4-1 元件導通時對應的能帶圖 12
2-4-2 元件截止時對應的能帶圖 13
三、 奈米線穿隧式場效電晶體製程開發與流程 17
3-1 前言 17
3-2 關鍵製程開發 17
3-3 元件製作流程 19
四、 電性量測與分析 38
4-1 前言 38
4-2 奈米線穿隧式場效電晶體之常溫電性分析 38
4-3 奈米線穿隧式場效電晶體之變溫電性分析 41
五、 總結與未來展望 49
參考文獻 50
參考文獻 ﹝1﹞K. Mistry., “Intel’s Revolutionary 22 nm Transistor Technology”, p. 10, 2011, http://download.intel.com/newsroom/kits/research/2011/pdfs/22nm_Discussion.pdf.
﹝2﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 328, 2007.
﹝3﹞D. Hisamoto, et al., “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, Vol. 47, p. 2320, 2000.
﹝4﹞Y. K. Choi, T. J. King, et al., “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron Device Lett., Vol. 23, p. 25, 2002.
﹝5﹞D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling and coherent oscillations in small tunnel junctions,” J. Low Temp. Phys., Vol. 62, p. 1573, 1986.
﹝6﹞T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev.Lett., Vol. 59, p. 109, 1987.
﹝7﹞H. Graber and M. H. Devoret, “Single charge tunneling: Coulomb blockade phenomena in nanostructures,” New York, Plenum, 1992, NATO ASI Series B 294.
﹝8﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 314, 2007.
﹝9﹞P.-F. Wang, et al., “Complementary tunneling transistor for low power application”, Solid-State Electronics, Vol. 48, p. 2282, 2004.
﹝10﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 418, 2007.
﹝11﹞H.-C. Lin, et al., “A Simple and Low-Cost Method to Fabricate TFEs With Poly-Si Nanowire Channel”, IEEE Electron Device Letters, Vol. 26, No. 9, 2009.
﹝12﹞J.-P. Colinge, “Silicon-on-insulator Technology: Materials to VLSI”, 3rd Ed, New York, p. 32, 2004.
﹝13﹞L. D. Yau, “A simple theory to predict the threshold voltage in short-channel IGFETs”, Solid-State Electronics, Vol. 17, p. 1059, 1974.
﹝14﹞Z. H. Liu, et al., “Threshold voltage model for deep submicron MOSFETs”, IEEE Trans. Electron Devices, p. 86, 1993.
﹝15﹞Y. Taur & T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, New York, 1998.
﹝16﹞J. Singh, et al., “A Novel Si-Tunnel FET based SRAM Design for Ultra Low-Power 0.3V VDD Applications”, IEEE Design Automation Conference, p. 181, 2010.
﹝17﹞J. Knoch, et al., “A novel concept for field-effect transistors - the tunneling carbon nanotube FET”, IEEE Device Research Conference Digest, p. 154, 2005.
﹝18﹞A. S. Verhulst, et al., “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor”, Journal of Applied Physics, Vol. 107, p. 2-3, 2010.
﹝19﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 91, 2007.
﹝20﹞M.-H. Juang, et al., “Formation of polycrystalline-Si thin-film transistors with tunneling field-effect-transistor structure”, Solid-State Electronics, Vol. 518, p. 3980, 2010.
﹝21﹞S. A. Dayeh, et al., “Synthesis, Fabrication, and Characterization of Ge/Si Axial Nanowire Heterostructure Tunnel FETs”, IEEE International Conference on Nanotechnology Joint Symposium, p. 3, KINTEX, Korea, 2010.
﹝22﹞T. W. Little, et al., “Low Temperature Poly-Si TFTs Using Solid Phase Crystallization of Very Thin Films and an Electron Cyclotron Resonance Chemical Vapor Deposition Gate Insulator”, Journal of Applied Physics, Vol. 30, No. 12B, p. 3724, 1991.
﹝23﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 104, 2007.
﹝24﹞H. Kawaura, “Observation of source-to drain direct tunneling current in 8 nm gate electrically variable shallow junction metal-oxide-semiconductor field-effect transistors”, Journal of Applied Physics, Vol. 76, No. 25, p. 3810, 2000.
﹝25﹞T. Nirschl., et al., “The tunneling field effect transistors (TFET): the temperature dependence, the simulation model, and its application”, IEEE Circuits and Systems, p. 714, 2004.
﹝26﹞J. Knoch, et al., “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices”, Solid-State Electronics, Vol. 51, p. 574, 2007.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2011-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明