博碩士論文 985201058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.230.76.196
姓名 王晟康(Cheng-kang Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
(IEGT and FS-IGBT layout design and analysis)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 以標準CMOS製程實現之850 nm矽光檢測器
★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體
★ 雙閘極金氧半場效電晶體與電路應用★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析
★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析
★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討
★ 離子佈植砷化鎵金屬半導體場效電晶體之研究★ 碰撞游離係數的量測及其在異質接面雙極性電晶體之設計應用
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體之研製及其集極調變對元件特性的影響★ 砷化鎵基體異質接面雙極性電晶體之研製與其在積體化功率放大器之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 絕緣閘雙極性電晶體整合金氧半電晶體的絕緣閘結構與雙極性電晶體的導通特性,具有易於驅動的低導通電阻、高輸出電流密度,可以承受高電壓及快速度的切換工作模式,克服兩種功率元件在應用上的缺點,達到中高功率、頻率上的有效應用。
本論文利用元件設計模擬軟體,來模擬先進絕緣閘雙極性電晶體元件的結構和分析內部半導體物理特性,藉由此模擬步驟能更精確的設計元件的製程參數,達成元件設計目標。目前絕緣閘雙極性電晶體主要朝向改善元件靜態特性,崩潰電壓、導通壓降,以及動態特性關閉時因切換所形成之功率損耗,因此在順向導通條件下,需較低的導通壓降及快速的切換速度,以減少功率效能的損失。
本論文藉由參考東芝公司與英飛凌公司設計溝渠式結構之絕緣閘雙極性電晶體,做一完整的相關研究與討論,探討佈局設計條件之趨勢與相關性分析。
摘要(英) Insulated Gate Bipolar Transistor (IGBT), which integrates the structures of Power Bipolar Transistor and Power MOSFET, and has better performance in many applications. It has low conduction resistance and high output current density.
In this thesis, we use device characteristics simulation tools to simulate the device structure and analyze the semiconductor physics characteristics. Due to the simulations, we can have a precise result to improve the process parameter. The IGBT is mainly toward improve the power performance, reduce the loss of power performance, having the lower conduction resistance and high breakdown voltage. We consult the device from TOSHIBA and Infineon company, and design a series of simulations.
關鍵字(中) ★ 高功率元件
★ 絕緣閘雙極性電晶體
關鍵字(英) ★ IGBT
論文目次 摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章、 導論 1
1.1 簡介 1
1.2 研究動機 1
1.3 發展與回顧 3
1.4 論文結構 3
第二章、 IGBT元件的結構與操作原理 4
2.1 簡介 4
2.2 元件結構 4
2.3 元件操作原理及模式 10
2.3.1 順向偏壓 (Forward-Bias Operation Mode) 12
2.3.2 逆向偏壓 (Reverse-Bias Operation Mode) 12
2.4 元件靜態崩潰特性 12
2.5 元件閂鎖特性 14
2.6 結論 14
第三章、 IGBT元件的製作流程與佈局設計 15
3.1 簡介 15
3.2 元件之製作流程 15
3.2.1 傳統型IGBT製作流程 15
3.2.2 IEGT製作流程 22
3.2.3 FS-IGBT製作流程 29
3.3 元件之佈局設計 36
3.3.1 IEGT之佈局設計流程 36
3.3.2 FS-IGBT之佈局設計流程 40
3.4 結論 44
第四章、 元件模擬分析討論 45
4.1 簡介 45
4.2 IEGT元件的佈局設計與分析 46
4.2.1 IEGT元件靜態特性 46
4.2.2 IEGT元件動態特性 58
4.3 FS-IGBT元件的佈局設計與分析 61
4.3.1 FS-IGBT元件靜態特性 61
4.3.2 FS-IGBT元件動態特性 72
4.4 元件之靜態特性比較與討論 73
4.5 元件之動態特性比較與討論 76
第五章、 結論 79
參考文獻 80
附錄 口試問題回答 83
參考文獻 [1] Duncan A. Grant, John.Gower, “Power MOSFETs: Theory and Applications” Wiley-Interscience 1989.
[2] Simon M. Sze, “Modern Semiconductor Device Physics” WileyBlackwell 1997.
[3] Baliga, B.J. “The future of power semiconductor device technology” Proceedings of the IEEE, 822 - 832, Volume: 89, Jun 2001.
[4]B.J. Baliga, “Evolution of MOS–Bipolar Power Semiconductor Technology”, Proceedings of the IEEE, Vol. 74, pp. 409–418, 1988
[5]Laska, T.; Matschitsch, M. Scholz, W. “Ultra thin-wafer technology for a new 600 V-NPT-IGBT”, Power Semiconductor Devices and IC's, 1997. ISPSD '97., 1997 IEEE International Symposium on 361 – 364 26-29 May 1997
[6]K. Mochizuki et al., “Examination of Punch-Through IGBT (PT-IGBT) for High Voltage and High Current Applications”, IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 237–240, 1997
[7] B. J. Baliga, P, and E. Sun, “Comparison of Gold, Platinum, and Electron Irradiation for Controlling Lifetime in Power Rectifier”, IEEE Trans Electron Devices., ED-24, pp.685, 1977.
[8] S.Catania, P. Frisina, and N.Tavolo, “Optimization of the Trade-Off between Switching Speed of the Internal Diode and On-Resistance in Gold and Platinum-Implanted Power Metal-Oxide-Semiconductor Devices”, IEEE Trans Electron Devices., Vol-39, pp.2745, 1992.
[9] Richard O.Carlson, “Lifetime Control in Silicon Power Devices by Electron or Gamma Irradiation”, IEEE Trans Electron Device, Vol-24, No-8,
pp.1103-1106,Aug 1977.
[10] B.J.Baliga, “Switching Speed Enhancement in Insulate Gate Bipolar Transistors by Electron Irradiation”, IEEE Trans Electron Devices., Vol-31, No-12, pp.1790-1795, 1984.
[11]T. Laska et al., “The Field-Stop IGBT (FS-IGBT)”, IEEE International Symposiumon Power Semiconductor Devices and ICs, pp. 355–358, 2000
[12] Huang, Y.S.;Baliga, B.J.;Tandon, S.;Reisman, A., “Comparison of DI and JI lateral IGBTs“, ISPSD '92. Proceedings of the 4th International Symposium on, Page(s): 40 – 43, 2002.
[13] Simpson, M.R. ;Gough, P.A. ;Hshieh, F.I. ;Rumennik, V., “Analysis of the lateral insulated gate transistor”, IEEE Trans Electron Devices Meeting, 1985 International. Pp. 740 2005
[14] Nezar, A.; Mok, P.K.T.; Salama, C.A.T.;“Latch-up prevention in insulated gate bipolar transistors”, International Power Semiconductor Devices and ICs, 1993. ISPSD '93., Page(s): 236 – 239. 1993
[15] Wuchen Wu; Changyong Fan; Yajie Wang; Yangang Wang; Xueqing Cui; Jacob, P.; Held, M.” SEM investigation on IGBT latch-up failure “, Solid-State and ntegrated-Circuit Technology, 2001. Proceedings. 6th International Conference Volume: 2 , Page(s): 1040 - 1042 vol.2 2001.
[16] Azzopardi, S.; Vinassa, J.-M.; Zardini, C.; ”Investigations on the Internal Physical Behaviour of 600V Punch-Through IGBT under Latch-up at High Temperature”, Solid-State Device Research Conference, 1997. Proceeding of the 27th European , Page(s): 616 – 619 1997.
[17] Muller, A.; Pfirsch, F.; Silber, D.; “Trench IGBT behaviour near to latch-up conditions”
Power Semiconductor Devices and ICs, 2005. Proceedings. ISPSD '05., Page(s): 255 - 258 2005
[18] Kitagawa, M.; Omura, I.; Hasegawa, S.; Inoue, T.; Nakagawa, A.; “A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor“, IEDM '93. Technical Digest., International , Page(s): 679 - 682 1993.
[19] Mori, M., Oyama, K., Arai, T., Sakano, J., Nishimura, Y., Masuda, K., Saito, K., Uchino, Y., Homma, H., "A Planar-Gate High-Conductivity IGBT (HiGT) With Hole-Barrier Layer", Electron Devices, IEEE Transactions, On page(s): 1515 - 1520, Volume: 54 Issue: 6, June 2007
[20] Otsuki, M., Onozawa, Y., Kanemaru, H., Seki, Y., Matsumoto, T., "A study on the short-circuit capability of field-stop IGBTs", IEEE Transactions Electron Devices, , On page(s): 1525 - 1531, Volume: 50 Issue: 6, June 2003.
[21] Laska, T.; Lorenz, L.; Mauder, A." The New IGBT Generation -A Great Improvement potential for motor drive systems ", Industry Applications Conference, 2000. Conference Record of the 2000 IEEE , pp.2885 -2889 2000
[22] T. Laska, M. Matcshitsch, and W. Scholtz, "Ultra thin-wafer technology for a new 600 V-NPT-IGBT", Proc. 9th ISPSD, pp.361 -364 1997
[23] M. Pfaffenlehner, T. Laska, R. Mallwitz, A. Mauder, F. Pfirsh, and C. chaeffer, "1700 V-IGBT3: field stop technology with optimized trench structure—trend setting for the high power applications in industry and traction", Proc. ISPSD'02, pp.105 -108 2002.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明