博碩士論文 985201062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.141.8.247
姓名 林毓誠(Yu-cheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
(A Design of 600 V New Carrier Store Trench-gate BipolarTransistor (CSTBT))
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體
★ 雙閘極金氧半場效電晶體與電路應用★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析
★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析
★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討
★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體
★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來電力的需求逐年上升,導致大量的自然資源花費並且排放大量的二氧化碳造成溫室效應。由於自然資源有限,人們必需更加有效率地利用資源去節省能源的損耗。
功率元件被大量地被使用在相當多領域,包括消費性電子、電源供應器、工業馬達驅動、火車及汽車電子等。為了要節省能源,可藉由降低功率半導體的功率損耗來達成。其中IGBT隨著技術的進步,促使了其應用範圍擴展到高頻與更高功率的領域。然而在台灣卻很少人投入IGBT的研究且無產品量產上市。
本論文將針對IGBT進行研究,而IGBT的發展主要是在於如何有效地降低導通壓降與提升關閉速度,來降低整體功率損耗。近年來改善IGBT的特性主要是藉由載子密度增加技術、降低從集極端電洞注入與增加載子生命週期等方向著手。本論文將對於這些技術進行探討,因而提出了新型的溝渠式載子儲存絕緣閘雙極性電晶體(CSTBT)且搭配場終止(Field-Sop)結構設計,而此設計主要是有關於CSTBT新的設計概念,為使用砷離子摻雜來形成載子儲存層且額外使用到磊晶製程。經由Tsuprem4與Medici模擬進行設計,結果顯示達到600 V耐壓的IGBT,且相較於無載子儲存層的FS-IGBT導通壓降低了0.42 V,約降低29 %的導通壓降,與低關閉下降時間34 ns。此結構也具有抑制傳統CSTBT臨限電壓變動的特性。最後也針對新型CSTBT提升其短路能力做出適當的設計。
摘要(英) In recently years, global electric demand is rising year by year, it result in a great mount of natural resource cost and emission of carbon dioxide causing greenhouse effect. Due to limited natural resources, people need to utilize efficiently these resources to economize the energy.
Using huge power semiconductor in a lot of field in consumer electronics, power supply, industrial motor drives, trains and car electronics. For saving energy, the power loss of power semiconductor need to reduce. Especially the progress of IGBT technology, it promote IGBT enhancement applied range of high frequency and high power. However, few people study IGBT and have no production in Taiwan.
This thesis carrier on research to IGBT. The development of IGBT mainly lies in how to reduce the on-state voltage and switching loss. Improve the performance of IGBT is realized by the carrier density enhancement technology, reduction of the collector side injection and long carrier lifetime. Therefore, this thesis focuses on these technologies to study. The proposed of the new CSTBT(Carrier Store Trench-Gate Bipolar Transistor)with the Field-Stop structure about a new design concept of CSTBT. The concept about using the Arsenic forms the carrier-store N layer and additional epi process. Consequently, we design a 600V IGBT that the on-state voltage is reduced almost 29 % compare with FS-IGBT and low turn-off fall time 34ns by the two-dimensional simulator Tsuprem4 and Medici. And new CSTBT has uniformity of threshold voltage character. Finally to improve new CSTBT short-circuit capability is designed.
關鍵字(中) ★ 功率元件
★ 絕緣閘雙極性電晶體
關鍵字(英) ★ CSTBT
★ IGBT
論文目次 摘要 IV
Abstract V
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1研究背景與動機 1
1.2 論文架構 4
第二章 IGBT技術發展 5
2.1前言 5
2.2功率元件之比較 5
2.3 IGBT表面結構發展 6
2.4 IGBT背部結構發展 9
2.4.1 穿透型(Punch-Through, PT)IGBT 9
2.4.2 非穿透型(Non-Punch Through, NPT)IGBT 10
2.4.3 場終止型(Field-Stop, FS)IGBT 10
2.5 相關研究發展 12
2.5.1 Injection enhanced insulated gate bipolar transistor(IEGT) 13
2.5.2 Carrier Store Trench-Gate Bipolar Transistor(CSTBT) 13
2.5.3 High-Conductivity IGBT(HiGT) 14
2.5.4 Trench Field Stop IGBT(Trenchstop IGBT) 16
2.5.6 Enhanced-Planar IGBT(EP-IGBT) 17
2.5.7 Double-Gate Trench IGBT(DG-TIGBT) 18
2.6 結論 19
第三章 IGBT基本工作原理 20
3.1前言 20
3.2元件基本結構特性 20
3.3元件基本操作原理 20
3.3.1逆向耐壓狀態(Reverse Blocking State) 20
3.3.2順向耐壓狀態(Forward Blocking State) 21
3.3.3導通狀態(On-State) 21
3.4元件崩潰之機制 24
3.4.1累增型崩潰 24
3.4.2穿透型崩潰 26
3.5動態特性 26
3.5.1導通(Turn-on) 27
3.5.2關閉(Turn-off) 27
3.5.3動態參數定義 28
3.6短路能力 29
3.7結論 32
第四章 新型CSTBT元件設計與模擬 33
4.1 前言 33
4.2元件設計目標 33
4.3元件模擬設計之基本製程參數 34
4.4新型CSTBT結構之設計 34
4.4.1以FS-IGBT為基礎設計背部結構 34
4.4.1.1 FS-IGBT製程模擬設計 35
4.4.1.2 FS-IGBT注入效率之探討 41
4.4.1.3 FS-IGBT場終止層濃度之探討 45
4.4.2傳統CSTBT結構之模擬設計 47
4.4.2.1傳統CSTBT製程模擬設計 47
4.4.2.2傳統CSTBT載子儲存層之探討與設計 50
4.4.3新型CSTBT製程模擬設計 55
4.4.4新型CSTBT N-磊晶層厚度與載子儲存層設計 58
4.4.4.1新型CSTBT N-磊晶層厚度之探討 58
4.4.4.2新型CSTBT載子儲存層之探討與設計 60
4.4.5新型CSTBT動態特性之探討 63
4.5 FS-IGBT、傳統CSTBT與新型CSTBT之特性比較 64
4.6 新型CSTBT短路能力之改善 68
4.7 新型CSTBT邊緣終端區設計 68
4.8結論 72
第五章 結論 73
參考文獻 74
附錄A IGBT動態量測 78
附錄B 口試問題回答 80
參考文獻 [1] B.J. Baliga, “Fundamentals of Power Semiconductor Devices,” Springer, pp739-740 ,2008
[2] B.J. Baliga et al., “The Insulated Gate Rectifier (IGR): A New Power Switching Device,” IEEE International Electron Devices Meeting, pp. 264–267, 1982
[3] 王曉君, “最佳化高耐壓絕緣閘雙極性電晶體邊緣終端區結構之研究,” 國立中興大學電機工程學系碩士論文, 民國九十四年
[4] H.R. Chang et al., “Insulated Gate Bipolar Transistor (IGBT) with a Trench Gate Structure,” IEEE International Electron Devices Meeting, pp. 674–677, 1987
[5] Motto et al., “Characteristics of a 1200 V PT IGBT with trench gate and local life time control,” Industry Applications Conference, pp. 811-816, 1998
[6] Burns et al., “NPT-IGBT-optimizing for manufacturability,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 331-334, 1996
[7] Konishi et al., “Optimized local lifetime control for the superior IGBTs,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 335-338, 1996
[8] Laska et al., “Ultra thin-wafer technology for a new 600 V-NPT-IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 361-364, 1997
[9] Tanaka et al., “600 V trench-gate NPT-IGBT with excellent low on-state voltage,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 279-282, 2000
[10] Miyashita et al., “Progress in development of high power NPT-IGBT module,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 285-288, 1998
[11] T. Laska et al., “The Field Stop IGBT (FS IGBT) – A New Power Device Concept with great improvement potential,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 355-368, 2000
[12] S.Dewar et al., “Soft Punch Through (SPT) – Setting new Standards in 1200V IGBT,” Power Conversion Intelligent Motion, pp. 593,2000
[13] Nakamura, K et al., “Advanced wide cell pitch CSTBTs having light punch through (LPT) structures,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 277-280, 2002
[14] K. Oyama et al., “Advanced HiGT with Low-injection Punch-through (LiPT)structure,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 111-114, 2004
[15] H. Ruething et al., “600V-IGBT3: trench field stop technology in 70 μm ultra thin wafer technology,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 211-214, 2004
[16] H. Hiisken et al., “FieldStop IGBT with MOS-like (tailless) turn-off,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 338-340, 2003
[17] M. Kitagawa, I. Omura, S. Hasegawa, T. Inoue and A. Nakagawa, “A 4500V injection enhanced insulated gate bipolar transistor (IEGT) in a mode similar to a thyristor,” IEEE International Electron Devices Meeting, pp. 679-682, 1993.
[18] H. Takahashi, H. Haruquchi, H. Hagino, and T. Yamada, “Carrier stored trench-gate bipolar transistor (CSTBT)-A novel power device for high voltage application,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 349-352, 1996.
[19] M. Mori et al., “A novel high-conductivity IGBT (HiGT) with a short circuit capability,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 429-432, 1998
[20] K. Oyama, Y. Kohno, J. Sakano, J. Uruno, K. Ishizaka, D. Kawase and M.Mori, “Novel 600-V trench high-conductivity IGBT (Trench HiGT) with short-circuit capability,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 417-420 , 2001
[21] Mutsuhiro Mori et al., “A Trench-Gate High-Conductivity IGBT (HiGT) With Short Circuit Capability,” IEEE TRANSACTIONS ON ELECTRON DEVICES, pp. 2011 - 2016 , 2007
[22] T. Laska et al., “1200 V-trench-IGBT study with square short circuit SOA,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 433-436 , 1998
[23] A. Kopta et al., “A Landmark in Electrical Performance of IGBT Modules Utilizing Next Generation Chip Technologies,” IEEE International Symposium on Power Semiconductor Devices and ICs, 2006
[24] M. Rahimo et al., “Novel Enhanced-Planar IGBT Technology Rated up to 6.5kV for Lower Losses and Higher SOA Capability,” IEEE International Symposium on Power Semiconductor Devices and ICs, 2006
[25] Wesley Chih-Wei Hsu et al., “A novel double-gate Trench Insulated Gate Bipolar transistor with ultra-low on-state voltage,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 291-294 , 2009
[26] Ryu Saitoh et al., “A study on edge termination technique at low temperature for high voltage IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 227-230 , 1996
[27] Y. C. KAO et al., “High-voltage planar p-n junctions,” Proceedings of the IEEE, pp. 1409-1414 , 1967
[28] T. Laska et al., “Short circuit properties of Trench-/Field-Stop-IGBTs design aspects for a superior robustness,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 152-155 , 2003
[29] Masahito Otsuki et al., “A study on the short-circuit capability of field-stop IGBTs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, pp. 1525-1531 , 2003
[30] Koh YOSHIKAWA et al., “Short-Circuit Destruction of Field-Stop-Structure Insulated Gate Bipolar Transistor,” Japanese Journal of Applied Physics, pp. 5973–5977, 2004
[31] A. Kopta et al., “Limitation of the short-circuit ruggedness of high voltage IGBTs,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 33-36 , 2009
[32] T. Laska et al., “1200V-Trench-IGBT Study with Square Short Circuit SOA,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 433-436 , 1998
[33] Tomoko Matsudai et al., “Ultra High Switching Speed 600 V Thin Wafer PT-IGBT Based on New Turn-off Mechanism,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 285-288 , 2002
[34] Katsumi Nakamura et al., “Wide Cell Pitch LPT(II)-CSTBT™(III) technology rating up to 6500 V for low loss,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 387-390 , 2010
[35] Katsumi Nakamura et al., “The Second Stage of a Thin Wafer IGBT Low Loss 1200V LPT-CSTBTTM with a Backside Doping Optimization Process,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 1-4 , 2006
[36] Hideki Takahashi et al., “600V CSTBT Having Ultra Low On-State Voltage,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 445-448 , 2001
[37] Tetsuo Takahashi et al., “CSTBTTM(III) as the next generation IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 72-75 , 2008
[38] Hideki Nakamura et al., “Wide cell pitch 1200 V NPT CSTBTs with short circuit ruggedness,” IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 299-302 , 2001
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明