博碩士論文 985201081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.132.223
姓名 邱翰琦(Han-chi Chiou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波與毫米波寬頻主動式降頻器
(Active Wideband Down-Converter for Microwave and Millimeter-Wave Applications)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在使用砷化鎵與互補式金屬氧化物半導體製程,研究及實現不同架構的寬頻混波器。論文內包含三種架構的寬頻混波器,分別陳述於第三、四和五章,第六章將三種架構的寬頻混波器做總結。
第二章首先介紹傳統單端式混波器之各種實現方法,簡述閘極驅動混波器之基本原理,推導出轉換增益的公式並探討其直流偏壓和電晶體尺寸對轉換效率的影響。使用達靈頓單元取代單一電晶體的來設計寬頻單端式閘極驅動電晶體混波器,並在互補式金屬氧化物半導體製程與砷化鎵製程分別實現介於20~70和25~45 GHz,具有5.5和12 dB轉換增益,本地振盪功率-1和2 dBm之寬頻混波器,最後呈現完整模擬與量測之結果,並與相關文獻比較討論。另外,利用前述之達靈頓單元,使用砷化鎵異質接面雙極性二極體及高速電子遷移率電晶體製程技術,模擬分析四種組態之達靈頓分佈式混波器,並探討四種架構之閘極與汲極傳輸線之特性,以實現寬頻分佈式混波器。在介於6~33 GHz間具有平坦的轉換增益,相較於其他砷化鎵製程之分佈式混波器,其有較小的晶片面積,及較低的本地振盪驅動功率。第五章利用電感補償技巧來改善的吉伯爾單元混波器高頻響應,介紹吉伯爾單元混波器之原理,並利用砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體製程技術完成寬頻混波器。加入電感補償技巧後,大幅改善吉伯爾混波器高頻響應,並探討轉導級與開關級的頻率響應與轉換增益、頻寬及轉換增益之理論計算分析,並完整量測結果驗證;此外還利用回授差動放大器以增加混波器輸出中頻之3 dB頻寬。最後,與相關文獻比較及做一完整討論。
摘要(英) The thesis aims to study and implement different topologies of the broadband mixer using GaAs and CMOS processes. Three circuit topologies for the broadband mixer are presented in Chapter 3, 4, and 5, respectively. The conclusion is summarized in Chapter 6.
The fundamental of the mixer and the processes are presented in Chapter 2. Some conventional single-ended mixers with various mechanisms are described in Chapter 3, and the fundamental of the gate-pumped mixer is also outlined. The broadband mixers are achieved using Darlington pair instead of a single transistor. The conversion gain of the mixer is investigated, the effect of the DC bias and the transistor size to conversion efficiency are also addressed. A 20~70 GHz single-ended Darlington mixer is implemented using 0.13 ?m CMOS process, the mixer has a conversion gain of 5.5 dB with a LO power of -1 dBm. In addition, a 25~45 GHz single-ended Darlington mixer is implemented using 0.5 ?m GaAs PHEMT process, the mixer has a conversion gain of 12 dB with a LO power of 2 dBm. The simulation and measurement are demonstrated. Moreover, a distributed mixer is implemented using the Darlington pair. The Darlington pair composes of GaAs HBT and HEMT, and broad bandwidth and high conversion gain can be both achieved using the proposed topology. The simulations of four distributed mixers are presented, and the theoretical conversion gain of the distributed mixer is carefully compared with the experimental results. The characteristic of the transmission lines at the gate and drain are also discussed. A 6~33 GHz distributed mixer with flat conversion gain is implemented using 2 ?m /0.5 ?m GaAs HBT-HEMT process, and the mixer has the advantages of the small chip size and the low LO power.
The Gilbert-cell mixer with inductive peaking is presented in Chapter 5. The fundamental of the Gilbert-cell mixer is introduced, and the transconductance stage and the switch stage are designed using various topologies with the HBT and HEMT to achieve broad bandwidth and good conversion gain. The theoretical calculation for the topologies and the frequency response of the transconductance and switch stages are also presented to verify the proposed design concept. Besides, a feedback IF amplifier is used to extend the 3-dB IF bandwidth of the mixer. Finally, the comparisons with the previously reported results and the conclusion are given in Chapter 6.
關鍵字(中) ★ 達靈頓
★ 寬頻混波器
★ 吉伯爾單元
★ 砷化鎵
★ 互補式金屬氧化物半導體
關鍵字(英) ★ broadband mixer
★ Darlington
★ Gilbert-cell
★ GaAs
★ CMOS
論文目次 中文摘要i
英文摘要ii
致謝iv
目錄v
圖目錄vii
表目錄xiii
第一章、序論1
1-1 研究動機1
1-2 相關研究發展1
1-3 論文貢獻及特點2
1-4 論文流程與架構3
第二章、混波器與製程簡介4
2-1 混波器簡介4
2-2 混波器優化指數(FOM)之定義7
2-3製程簡介9
2-2-1 台積電0.13 μm CMOS 製程9
2-2-2 穩懋0.5 μm GaAs E/D PHEMT製程9
2-2-3穩懋2 μm / 0.5 μm GaAs HBT-HEMT製程9
第三章、達靈頓主動式寬頻混波器10
3-1簡介10
3-1-1電阻性混波器(Resistive FET Mixer)10
3-1-2場效電晶體混波器(FET Mixer)11
3-2電路設計與分析12
3-3電路模擬與量測結果22
3-3-1 CMOS 0.13 μm 主動式寬頻混波器22
3-3-2 GaAs 0.5 μm E/D PHEMT主動式寬頻混波器29
3-4總結35
第四章、主動分佈式混波器41
4-1簡介41
4-2電路設計與分析44
4-3電路模擬與量測結果51
4-4總結58
第五章、主動式雙平衡寬頻混波器61
5-1 簡介61
5-2電路設計與分析61
5-3電路模擬與量測80
5-3-1 GaAs HEMT-HBT寬頻混波器82
5-3-2 GaAs HEMT-HEMT寬頻混波器88
5-3-3 GaAs HEMT-HBT中頻回授混波器94
5-3-4 GaAs HEMT-HEMT中頻回授混波器99
5-4總結105
第六章、結論108
參考文獻109
參考文獻 [1]IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems, May 2009.
[2]P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Micro. Theory Tech., vol. 53, no. 10, pp. 3106–3114, Oct 2005.
[3]H.-K. Chiou, and T.-Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-um CMOS technology,” IEEE Trans. Micro. Theory Tech., vol. 56, no. 4, pp. 835–848, April 2008.
[4]M. Lee, B. Lim, S. Lee, D. Ko, S. Moon, D. An, Y. Kim, S. Kim, H. Park, and J. Rhee, “A novel 94-GHz MHEMT-based diode mixer using a 3-dB tandem coupler,” IEEE Micro. Wireless Compon. Lett.,vol. 18, no. 9, pp. 626–628, September 2008.
[5]F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Micro. Theory Tech., vol. 52, no. 5, pp. 1384–1391, May 2004.
[6]M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no.10, pp. 2257–2264, Oct. 2006.
[7]S.-K. Lin, J.-L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13 μm CMOS technology,” IEEE Micro. Wireless Compon. Lett.,vol. 21, no. 10, pp. 562–564, Oct. 2011.
[8]S. Pruvost, I. Telliez, F. Danneville, G. Dambrine, N. Rolland, and F. Pourchon, “A 40 GHz single-ended down-conversion mixer in 0.13 um SiGe BiCMOS HBT,” IEEE Micro. Wireless Compon. Lett.,vol. 15, no. 8, pp. 496–498, Aug. 2005.
[9]I. Kallfass, H. Massler, A. Leuther, A. Tessmann, and M. Schlechtweg “A 210 GHz dual-gate FET mixer MMIC with >2 dB conversion gain high LO-to-RF isolation and low LO-drive requirements,” IEEE Micro. Wireless Compon. Lett.,vol. 18, no. 8, pp. 557–559, Aug. 2008.
[10]J. Kim, M.-S. Jeon, D. Kim, J. Jeong, and Y. Kwon, “high-performance V-band cascode HEMT mixer and downconverter module,” IEEE Trans. Micro. Theory Tech., vol. 51, no. 3, pp. 805–810, March 2003.
[11]On San A. Tang and Colin S. Aitchison, “A very wide-band microwave MESFET mixer using the distributed mixing principle,” IEEE Trans. Micro. Theory Tech., vol. 33, no. 12, pp. 1470–1478, Dec. 1985.
[12]K.-L. Deng, H. Wang, “A 3-33 GHz PHEMT MMIC distributed drain mixer,” in Proc. Radio Freq. Integr. Circuits Symp., 2002, pp. 151–154.
[13]H.Y Yang, J.H Tsai, C.H Wang, C.S Lin, W.H Lin, K.Y Lin, T.W Huang, and H. Wang, “design and analysis of a 0.8–77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology,” IEEE Trans. Micro. Theory Tech., vol. 57, no. 3, pp. 562–572, Mar. 1985.
[14]C.H Chiu, K.H Liang, H.Y. Chang, and Y.J Chan, “A 3-34 GHz GaAs PHEMT distributed mixer with low dc power consumption,” IEEE Comp. Semi. Integr. Circuit Symp., Nov. 2006, pp. 73–76.
[15]K. S. Ang, S. Nam and I. D. Robertson “A 2 to 18GHz monolithic resistive distributed mixer,” in Proc. 29th Eur. Solid-State Circuits Conf., Oct. 1999, pp. 222–225.
[16]W. KO and Y. Kwon, “A GaAs-based 3-40 GHz distributed mixer with cascode FET cells,” in Proc. Radio Freq. Integr. Circuits Symp., June. 2004, pp. 413–416.
[17]T. S. Howard and A. M. Pavio “A distributed monolithic 2-18 GHz daul-gate FET mixer,” in Micro. and Millimeter-Wave Monolithic Circuits Symp.,vol. 87, pp. 27–30, Jun. 1987.
[18]F.C Chang, P.S Wu, M.F Lei, and H. Wang, “A 4–41 GHz singly balanced distributed mixer using GaAs PHEMT technology,” IEEE Micro. Wireless Compo. Lett.,vol. 17, no. 2, pp. 136–138, Feb. 2007.
[19]C.-S. Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS Technology,” IEEE Micro. and Wireless Compon. Lett., vol. 16, no. 5, May 2006
[20]J.-H. Tsai, P.-S. Wu, , C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Micro. and Wireless Compo. Lett.,vol. 17, no. 4, April 2007.
[21]F. Zhang, E. Skafidas, and W. Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130 nm CMOS,” in IEEE RFIC Symp., June. 2007, pp. 141–143.
[22]A. Khy and B. Huyart ,“A (35 – 45) GHz low power direct-conversion Gilbert-cell mixer in 0.13μm GaAs PHEMT,” in Proc. 40th Eur. Solid-State Circuits Conf., Sep. 2010, pp.1058-1061.
[23]J.-H. Tsai, H.-Y. Yang, C.-S. Lin, T.-W. Huang and H. Wang, “A 30 –100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology”, IEEE Micro. and Wireless Compo. Lett., vol. 18, no.8, pp. 554 – 556, August 2008.
[24]S. Hackl, J. Beck, M. Wurzer, and A.L. Scholta, “40 GHz monolithic integrated mixer in SiGe bipolar technology”, in IEEE MTT-S Int. Microwave Symp. Dig.,vol. 2, pp. 1241 – 1244, May 2002.
[25]M.-D. Tsai, C.-S. Lin, C.-H. Wang, C.-H. Lien, and H. Wang, “A 0.1–23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” in IEEE RFIC Symp., June. 2004, pp.417–420.
[26]M.-D. Tsai, and H. Wang, “A 0.3–25-GHz ultra-wideband mixer using commercial 0.18-?m CMOS technology,” IEEE Micro. and Wireless Compo. Lett., vol. 50, no.11, pp. 522 – 524, Nov. 2004.
[27]B. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1–17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2564–2568, Nov. 2002.
[28]C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 um CMOS technology,” IEEE Micro. and Wireless Compo. Lett., vol. 19, no.8, pp. 521 – 523, Aug. 2009.
[29]E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no.8, pp. 1231–1240, Aug. 2004.
[30]A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, “A W-band highly linear SiGe BiCMOS double-balanced active up-conversion mixer using multi-triplet technique,” IEEE Micro. and Wireless Compo. Lett., vol. 20, no.4, pp. 220 – 222, April 2010.
[31]C.-R. Wu, H.-H. Hsieh, and L.-H. Lu, “An ultra-wideband distributed active mixer MMIC in 0.18-um CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 4, pp. 2564–2568, April 2007.
[32]B. R. Jackson, and C. E. Saavedra, “A dual-band self-oscillating mixer for C-band and X-band applications,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 2, pp. 318–323, Feb. 2010.
[33]T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H. Wang, “A low-power oscillator mixer in 0.18-um CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 88–95, Jan. 2006.
[34]K. W. Kobayashi, A. K. Oki, D. K. Umemoto, T. R. Block, and D. C. Streit, “A novel self-oscillating HEMT–HBT cascode VCO-mixer using an active tunable inductor,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 1231–1240, June. 1998.
[35]M. J. Roberts, S. Iezekiel, and C. M. Snowden, “A W-band self-oscillating subharmonic MMIC mixer,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2104–2108, Dec. 1998.
[36]Stanley S. K. Ho, and Carlos E. Saavedra, “A CMOS broadband low-noise mixer with noise cancellation,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 5, pp. 1126–1132, May 2010.
[37]Ahmed Amer, Emad Hegazi, and Hani F. Ragaie, “A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323–328, Feb. 2007.
[38]Stephen A. Mass, “Microwave mixer second edition,” Artech House, 1998.
[39]Tom K. Johansen, Jens Vidkjar, and Viktor Krozer, “analysis and design of wide-band SiGe HBT active mixers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 7, pp. 2389–2397, May 2005.
[40]Shou-Hsien Weng, Hong-Yeh Chang and Chau-Ching Chiong, “design of a 0.5-30 ghz Darlington amplifier for microwave broadband applications,” in IEEE MTT-S Int. Microwave Symp.Dig., pp.137-140, May 2010.
[41]蔡明達,“應用於微波與毫米波之矽基寬頻放大器與混波器,”國立臺灣大學電信工程研究所博士論文,九十四年七月。
[42]X. Fan, and et al. “analysis and design of low-distortion CMOS source followers,” IEEE Trans. Circuits and Syst. I, vol. 52, no. 8, pp.1489-1501, Aug. 2005.
[43]楊宗育,“微波/毫米波頻段寬頻與低損耗金氧半導體平衡至不平衡轉換器之研製及其應用,”國立中央大學電機工程研究所博士論文,九十七年七月。
指導教授 張鴻埜(Hong-yeh Chang) 審核日期 2011-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明