博碩士論文 985201082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.21.248.47
姓名 李逸群(Yi-Chun Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
(Varactor-Based and Switch-Based Tunable Matching Networks for Power Amplifier Efficiency Enhancement)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 全通網路相位偏移器之設計與製作
★ 使用可調式負載及面積縮放技巧提升功率放大器之效率★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現
★ 應用於極座標發射機之高效率波包放大器與功率放大器★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現
★ 鐵電可變電容之設計與製作★ 用於功率放大器效率提升之鐵電基可調式匹配網路
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主要研究內容為利用可調式匹配網路於功率放大器效率之提升。我們使用變容二極體與電晶體開關設計可調式匹配網路,以改變電晶體的負載阻抗,提升功率放大器於低功率區時的效率。
  首先,我們使用WIN 0.15-μm GaAs pHEMT製程中的變容二極體作為可調式元件來設計一負載阻抗連續可調之功率放大器。在頻率5.8 GHz下的量測結果顯示,其Pout,1dB為20.8 dBm。與製作於同一晶片上之固定式功率放大器比較,當輸出功率為18.5 dBm時,可提升2.8% 之PAE,並降低12% 的直流功率消耗。
  接著,我們使用以TSMC 0.18-μm SiGe BiCMOS製程中的CMOS電晶體開關來實現可切換式功率放大器。在頻率6.4 GHz下的量測結果顯示,當輸出功率為17 dBm時(約4-dB back-off),將CMOS開關由ON-state切換為OFF-state,可提升3.3% 之PAE,並降低22% 的直流功率消耗。
  本論文設計使用可調式匹配網路之功率放大器,並成功將之以積體電路製程實現。由量測結果得知此可變負載技術的確可以有效地提升功率放大器之效率,並顯著地降低其直流功率消耗。
摘要(英) The focus of this thesis is to use tunable matching networks for power amplifier efficiency enhancement. We design varactor-based and switch-based tunable matching networks to vary the load impedances presented to the transistors in order to enhance the power efficiency of the power amplifiers in low power regions.
 First, a power amplifier with continuously tunable load impedance is designed based on the varactors on WIN 0.15-μm GaAs pHEMT process. The measurement results at 5.8 GHz show that the P1dB of the power amplifier is 20.8 dBm. Compared with a power amplifier with fixed matching network that is fabricated on the same chip, the tunable power amplifier exhibits a PAE enhancement of 2.8% and a 12% reduction in DC power consumption at the output power level of 18.5 dBm.
 Next, a swichable power amplifier is realized using the CMOS switches in TSMC 0.18-μm SiGe BiCMOS technology. The measurement results at 6.4 GHz show that, when the switch is switched from ON state to OFF state, the PAE is enhanced by 3.3% whereas the DC power consumption is reduced by 22% at the output power level of 17 dBm, which corresponds to 4-dB power back-off.
 In this thesis, power amplifiers with tunable matching networks are designed and successfully implemented using integrated circuit technologies. Verfied by measurement results, the variable load technique can effectively enhanece the power efficiency and significantly reduce the DC power consumption of the power amplfiers.
關鍵字(中) ★ 可調式匹配網路.
★ 功率放大器
★ 效率
關鍵字(英) ★ power amplifiers
★ tunable matching networks.
★ Efficiency
論文目次 摘要.....................................................I
Abstract................................................II
目錄...................................................III
圖目錄..................................................IV
表目錄..................................................VI
第一章 緒論..............................................1
1-1研究動機..............................................1
1-2文獻回顧..............................................1
1-3章節介紹..............................................3
第二章 使用可調式輸出匹配網路之 5.8 GHz功率放大器........4
2-1簡介..................................................4
2-2可調式功率放大器設計..................................8
2-3電路模擬與量測結果...................................15
2-3-1 S參數模擬與量測結果...............................16
2-3-2大訊號模擬與量測結果...............................22
2-3-3量測與偵錯結果比較.................................28
2-4結果與討論...........................................35
第三章 用於降低直流功耗之可切換式功率放大器.............37
3-1簡介.................................................37
3-2可切換式功率放大器設計...............................39
3-2-1可切換式負載阻抗...................................39
3-2-2可切換式電容.......................................42
3-2-3可切換式功率放大器.................................48
3-3電路模擬與量測結果...................................51
3-3-1 S參數與大訊號模擬與量測結果.......................51
3-3-2量測與偵錯結果比較.................................59
3-4結果與討論...........................................63
第四章 結論.............................................65
參考文獻................................................67
參考文獻 [1] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, “L-band transmitter using Kahn EER technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2220–2225, December 1998.
[2] D. Su and W. J. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2252–2258, December 1998.
[3] D. Cox, “Linear amplification with nonlinear components,” IEEE Transactions on Communications, vol. 22, no. 12, pp. 1942–1945, December 1974.
[4] F. H. Raab, “Efficiency of outphasing RF power-amplifier systems,” IEEE Transactions on Communications, vol. 33, no. 10, pp. 1094–1099, October 1985.
[5] B. Stengel and W. R. Eisenstadt, “LINC power amplifier combiner method efficiency optimization,” IEEE Transactions on Vehicular Technology, vol. 49, no. 1, pp. 229–234, January 2000.
[6] I. Hakala, D. K. Choi, L. Gharavi, N. Kajakine, J. Koskela, and R. Kaunisto “A 2.14-GHz Chireix outphasing transmitter,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 2129–2138, June 2005.
[7] S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, and A. Abidi, “An outphasing power amplifier for a software-defined radio transmitter,” 2008 IEEE International Solid-State Circuits Conference Digest, pp. 568, 569, and 636, February 2008.
[8] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, December 2004.
[9] M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebek, “A polar modulator transmitter for GSM/EDGE,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2190–2199, December 2004.
[10] R. B. Staszewski, J. L. Wallberg, S. Rezeq, C.-M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469–2482, December 2005.
[11] A. W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1133–1141, May 2006.
[12] K. Yang, G. I. Haddad, and J. R. East, “High-efficiency class-A power amplifiers with a dual-bias-control scheme,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1426–1432, August 1999.
[13] N. Wang, V. Yousefzadeh, D. Maksimović, S. Pajić, and Z. B. Popović, “60% efficient 10-GHz power amplifier with dynamic drain bias control,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1077–1081, March 2004.
[14] B. Sahu and G.A. Rincon-Mora, “A high efficiency WCDMA RF power amplifier with adaptive, dual-mode buck-boost supply and bias-current control,” IEEE Microwave Wireless Component Letters, vol. 17, no. 3, pp. 238–240, March 2007.
[15] Y.-S. Jeon, J. Cha, and S. Nam, “High-efficiency power amplifier using novel dynamic bias switching,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 690–696, April 2007.
[16] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244–1255, April 2005.
[17] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High efficiency envelope tracking W-CDMA base-station amplifier using GaN HFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 11, pp. 3848–3856, November 2006.
[18] K. Takahashi, S. Yamanouchi, T. Hirayama, and K. Kunihiro, “An envelope tracking power amplifier using an adaptive biased envelope amplifier for WCDMA handsets,” 2008 IEEE Radio Frequency Integrated Circuits Symposium, pp. 405 – 408, June 2008.
[19] M. Iwamoto, A.Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472–2479, December 2001.
[20] Y. Yang, J. Cha, B. Shin, and B. Kim, “A fully matched N-way Doherty amplifier with optimized linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 986–993, March 2003.
[21] J. Kang, D. Yu, K. Min, and B. Kim, “A ultra-high PAE Doherty amplifier based on 0.13-mm CMOS process,” IEEE Microwave and Wireless Component Letters, vol. 16, no. 9, pp. 505–507, September 2006.
[22] M. J. Pelk, W. C. E. Neo, J. R. Gajadharsing, R. S. Pengelly, and L. C. N. de Vreede, “A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1582–1591, July 2008.
[23] Y.-S. Lee, M.-W. Lee, and Y.-H. Jeong, “Unequal-cells-based GaN HEMT Doherty amplifier with an extended efficiency range,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 8, pp. 536–538, August 2008.
[24] V. Kaajakari, A. Alastalo, K. Jaakkola, and H. Seppä, “Variable antenna load for transmitter efficiency improvement,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1666–1672, August 2007.
[25] W. C. E. Neo, Y. Lin, X.-D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, September 2006.
[26] J.-S. Fu and A. Mortazawi, “A tunable matching network for power amplifier efficiency enhancement and distortion reduction,” 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 1151–1154, June 2008.
[27] J.-S. Fu and A. Mortazawi, “Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3239–3244, December 2008.
[28] H. M. Nemati, C. Fager, U. Gustavsson, R. Jos, and H. Zirath, “Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1110–1118, May 2009.
[29] J. Kim, Y. Yoon, H. Kim, K.-H. An, W. Kim, H.-W. Kim, C.-H. Lee, and K. T. K Kornegay, “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure, ” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1034–1048, April 2011.
[30] H. T. Jeong, H. S. Lee, I. S. Chang, and C. D. Kim, “Efficiency enhancement method for high-power amplifiers using a dynamic load adaptation technique,” in 2005 IEEE MTT-S International Microwave Symposium Digest, pp. 2059–2062, June 2005.
[31] G. Leuzzi and C. Micheli, “Variable-load constant efficiency power amplifier for mobile communication applications,” 33rd Proceeding of European Microwave Conference, pp. 375–377, October 2003.
[32] F. Carrara, C. D. Presti, F. Pappalardo, and G. Palmisano, “A 2.4-GHz 24-dBm SOI CMOS Power Amplifier With Fully Integrated Reconfigurable Output Matching Network,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 9, pp. 2122–2130, September 2009.
[33] H. Kim, Y. Yoon, O. Lee, K. H. An, D. H. Lee, W. Kim, C.-H. Lee, and J. Laskar, “A fully integrated CMOS RF power amplifier with tunable matching network for GSM/EDGE dual-mode application,” 2010 IEEE MTT-S International Microwave Symposium Digest, pp. 800–803, May 2010.
[34] Y. Yoon, H. Kim, K.H An, J. Kim, C.-H. Lee, and J. Laskar, “A fully-integrated dual-mode tunable CMOS RF power amplifier with enhanced low-power efficiency,” 2010 European Microwave Conference (EuMC), pp. 982-986, September 2010.
[35] Y. Yoon, H. Kim, Y. Park, M. Ahn, C.-H. Lee, and J. Laskar, “A high-power and highly linear CMOS switched capacitor,” IEEE Microwave and Wireless Components Letters, vol. 20, pp. 619-621, November 2010.
[36] B. Kim, K. Lee, and J. Lee, “Effect of bias circuits on receiver band and noise of GaAs HBT power amplifier,” IEICE Electronics Express, vol. 7, pp. 159-164, January 2010.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2011-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明