博碩士論文 985201084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:3.94.129.211
姓名 黃致勝(Chih-sheng Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
(Microwave and Millimeter-Wave Injection-Locked Frequency Divider, Oscillator and the RF Front-end Applications)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著無線通訊快速的發展,許多系統已廣泛應用在微波與毫米波頻段上。為了提供系統穩定且低相位雜訊之本地振盪源,注入鎖定技術已逐漸應用於振盪器、除頻器、鎖相迴路與倍頻器等主動電路。本論文研究方向著重於使用注入鎖定技術之本地振盪源組件以應用於24 GHz汽車雷達系統之前端收發積體電路。論文內容主要分為三部分:第二章與第三章為第一部分,分別闡述應用於鎖相迴路中的注入鎖定除頻器及其鎖相迴路應用。第四章為第二部分,主要為注入鎖定振盪器的設計與分析。最後,第五章則是呈現一個應用於24 GHz雷達收發系統的前端電路。
第二章介紹各類除頻器架構以及設計原理,同時採用台積電提供的0.18 μm 互補式金氧半場效電晶體製程(TSMC 0.18 μm CMOS)實現一個除五注入鎖定除頻器,量測最大鎖定頻寬為3.84 GHz。第三章是將第二章所提出之除頻器整合至鎖相迴路系統,包含壓控振盪器(VCO)、相位頻率偵測器(PFD:Phase Frequency Dector)、電荷幫浦(CP:Charge Pump)、迴路濾波器(Loop Filter)及除頻鏈(divider chain),同樣是使用TSMC 0.18 μm CMOS製程實現,其鎖定範圍為21.29~21.88 GHz,且輸出功率皆大於0 dBm。當輸出頻率為21.88 GHz時,在偏移中心頻1 MHz量測之輸出相位雜訊為−101.4 dBc/Hz。
第四章為注入鎖定振盪器的設計與分析,並使用台積電提供的90 nm 互補式金氧半場效電晶體製程(TSMC 90 nm CMOS)實作一個鎖定頻寬有20.4 GHz的W頻段注入鎖定振盪器,其輸出功率平坦度為2 dB。最高輸出頻率為108 GHz。第五章是採用WIN 0.5 μm E/D-PHEMT製程來實現測速與測距雷達系統之前端收發積體電路。此雷達系統包括低雜訊放大器(LNA)、混波器(Mixer)、緩衝放大器(Buffer amplifier)、壓控振盪器(VCO)及功率放大器(PA)。
摘要(英) In order to provide system with a stable and low phase noise local oscillator (LO) for the microwave and millimeter wave (MMW) system, an injection-locked technique is widely used in active circuits, such as oscillator, frequency divider, phase-locked loop (PLL), and frequency multiplier. The aim of this dissertation is to develop the components in the LO by using the injection-locked technique and the radio frequency (RF) front-end integrated circuits (ICs) of a 24-GHz automotive radar applications. The dissertation is mainly divided into three parts. Chapter 2 and Chapter 3 constitute the first part and present a K-band injection-locked frequency divider (ILFD) and its PLL application, respectively. The second part is Chapter 4, and the design and analysis of the injection-locked tripler is presented. Finally, Chapter 5 presents the development of the 24 GHz RF front-end transceiver.
The analysis and design of the ILFD are introduced in Chapter 2. The divide-by-5 ILFD with a locking range of 3.84 GHz is fabricated using TSMC 0.18 μm CMOS process. Moreover, the proposed ILFD is applied to a fully integrated PLL, and the simulated and measured results are presented in Chapter 3. The frequency of PLL is from 21.29 to 21.88 GHz and the output power is higher than 0 dBm. The measured output phase noise is −101.4 dBc/Hz at 1 MHz offset, while the output frequency is 21.88 GHz.
The design and analysis of an injection-locked oscillator (ILO) is presented in Chapter 4. The ILO with a locking range of 20.4 GHz and an output power flatness of 2 dB is realized using TSMC 90 nm CMOS process. The maximum output frequency is 108 GHz. The implementations of the front-end ICs for the 24 GHz automotive radar applications are designed using WIN 0.5 μm E/D-PHEMT. The RF transceiver consists of a low noise amplifier, a mixer, a buffer amplifier, a voltage control oscillator, and a power amplifier.
關鍵字(中) ★ 注入鎖定
★ 鎖相迴路
★ 射頻前端積體電路
關鍵字(英) ★ Injection-Locked
★ Phase-Locked Loop (PLL)
★ RF Front-end integrated circuits
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 1
1.3 貢獻 3
1.4 論文架構 3
第二章 K頻段除五注入鎖定除頻器 5
2.1 簡介 5
2.2 除頻器架構概述 6
2.2.1 單真一相位時序(TSPC)除頻器[16] 7
2.2.2 電流模式邏輯(CML)除頻器[17] 7
2.2.3 米勒(Miller)除頻器[18] 9
2.2.4 注入鎖定(Injection-locked)除頻器 10
2.3 注入鎖定原理與鎖定頻寬分析[37] 11
2.4 K頻段除五注入鎖定除頻器 22
2.4.1 除五除頻器架構簡介 22
2.4.2 電路設計與分析 25
2.4.3 電路實現、實驗結果與討論 34
2.5 總結 51
第三章 K頻段鎖相迴路 53
3.1 簡介 53
3.2 壓控振盪器 54
3.2.1 振盪器架構簡介 54
3.2.2 K頻段NMOS交錯耦合壓控振盪器與實驗結果 55
3.3 除頻器 58
3.4 相位頻率偵測器 60
3.5 電荷幫浦 63
3.6 迴路濾波器與迴路分析 67
3.7 電路實現、實驗結果與討論 72
3.8 總結 78
第四章 W頻段注入式鎖定振盪器 80
4.1 簡介 80
4.2 鎖定頻寬分析[83]-[85] 81
4.3 W頻段注入式鎖定振盪器 83
4.3.1 注入式三倍頻器簡介 83
4.3.2 電路設計 85
4.4 電路實現、實驗結果與討論 89
4.5 總結 98
第五章 24 GHZ汽車雷達收發系統 99
5.1 雷達原理簡介[11] 99
5.2 24 GHZ汽車測速、測距雷達系統 103
5.3 24 GHZ汽車雷達發射系統 104
5.3.1 K頻段差動壓控振盪器設計與實驗結果 104
5.3.2 功率放大器簡介 108
5.3.3 K頻段功率放大器設計與實驗結果 110
5.4 24 GHZ汽車雷達發射系統模擬與量測結果 116
5.5 24 GHZ汽車雷達接收系統 120
5.5.1 K頻段低雜訊放大器設計與實驗結果 120
5.5.2 混波器簡介 125
5.5.3 K頻段混波器設計與實驗結果 125
5.5.4 K頻段緩衝放大器設計與實驗結果 131
5.5.5 壓控振盪器與緩衝放大器之整合電路模擬與量測結果 135
5.6 24 GHZ汽車雷達接收系統模擬與量測結果 139
5.7 總結 142
第六章 結論 144
參考文獻 145
參考文獻 [1]K.-W. Chang, H. Wang, G. Shreve, J. Harrison, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microw. Theory Tech., vol. 43, no.7, pp. 1659−1668, Jul. 1995.
[2]D. A. Williams, “Millimeter wave radars for automotive applications,” 1992 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 1992, pp. 721-724.
[3]A. G. Stove, “Automobile radar,” Appl. Microwave Mag., Spring 1993, pp. 102−115.
[4]E. C. Niehenke, P. Stenger, T. McCormick, and C. Schwerdt, “A planar 94-GHz transceiver with switchable polarization,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 167−170
[5]H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowski, “77 GHz fully-MMIC automotive forward-looking radar,” in 1999 GaAs IC symp. Dig., pp. 211−214.
[6]H. Rohling, M. M. Meinecke, M. Klotz, and E. Mende, “Experience with an experimenatial car controlled by a 77 GHz radar sensor,” 1998 International Radar Symposium, Munich, vol. 1, 1998, pp. 345−354.
[7]Thomas Musch, “A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL,” IEEE Trans. Instrumentation and Measurement, vol. 52, pp. 324−327, Apr. 2003.
[8]M. Klotz, and H. Rohling, “24 GHz radar sensors for automotive applications,” 2000 Microwave Radar and Wireless Communications Conference Dig., vol. 1, May 2000, pp. 359−362.
[9]D. Richardson, “An FMCW radar sensor for collision avoidance,” 1997 Intelligent Transportation System Conference, Nov. 1997, pp. 427−432.
[10]T. H. Ho, S. J. Chung, “A compact 24 GHz radar sensor for vehicle sideway-looking applications,” 2005 EURAD, Oct. 2005, pp. 351−354.
[11]Kai Chang, RF and microwave wireless systems, John Wiley & Sons, Inc. 2000.
[12]J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesiser Design, London, U.K.: Kluwer, 1998.
[13]N. Da Dalt, S. Derksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizer with 3 ps jitter in 0.18 mm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Devices Research Conf., Firenze, Italy, Sep. 2002, pp. 415–418.
[14]T.-N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620–625, March 2008.
[15]J.-L. Li, S.-W. Qu, and Q. Xue, “A theoretical and experimental study of injection-locked fractional frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2399–2408, Nov. 2008.
[16]J. Yuan, and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62–70, Feb. 2004.
[17]U. Singh, and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658–1661, Aug. 2005.
[18]J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[19]H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[20]Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in IEEE RFIC Symp. Dig. Papers, 2008, pp. 435–438.
[21]K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. Eur. Solid-State Circuits Conf., pp. 135–138, Sep. 2004.
[22]H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech. Papers, 2001, pp. 412–413.
[23]J.-C. Chien and L.-H. Lu, “A 40 GHz wide-locking-range frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 544–621.
[24]K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 466–628.
[25]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency dividers,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[26]S.-L. Jang, C.-F. Lee, and W.-H. Yeh, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142–144, Feb. 2008.
[27]H. Wu and Z. Lin, “A 16-to-18GHz 0.18-μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 2482–2491.
[28]S.-L. Jang, C.-F. Lee, and W.-H. Yeh, “A wide-locking-range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390–392, Feb. 2010.
[29]X.-P. Yu et al., “A 3 mW 54.6 GHz divide-by-3 injection locked requency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 575–577, Sep. 2009.
[30]S.-L. Jang and C.-W Chang, “A 90nm CMOS LC-tank divide-by-3 injection locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229–231, Apr. 2010.
[31]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 2472–2481.
[32]P. Mayr, C. Weyers, and U. Langmann, “A 90 GHz 65 nm CMOS injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 198–596.
[33]S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236–238, Apr. 2009.
[34]S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, Apr. 2007.
[35]S.-L. Jang, Y.-H. Chung, and J.-J. Chao, “Circuit techniques for CMOS divide-by-four frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 217–219, Mar. 2007.
[36]M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 Ghz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[37]H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393–405, Feb. 2011.
[38]C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[39]J. Hu and B. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS ,” in IEEE RFIC Symp. Dig. Papers, pp. 665–668, 2008.
[40]J. Jeong and Y. Kwon, “V-Band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1891–1898, Jun. 2011.
[41]M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “60 GHz CMOS divide-by-5 injection-locked frequency divider with an open-stub-loaded floating-source injector,” in IEEE RFIC Dig. Papers, 2011.
[42]P.-K. Tsai, T.-H. Huang, and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Letters, vol. 46, pp. 1003–1004, 2010.
[43]T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13um CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409–2415, Nov. 2008.
[44]“Sonnet User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[45]B.-Y. Lin, K.-H. Tsai, and S.-I. Liu, “A 128.24-to-137.00 GHz injection-locked frequency divider in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 282–283.
[46]李銘偉,24-GHz與60-GHz CMOS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國99年
[47]Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2477–2485, Oct. 2011.
[48]X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased-array receiver in Silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311–2320, Dec. 2004.
[49]D. Saunders1 et al., “A single-chip 24 GHz SiGe BiCMOS transceiver for FMCW automotive radars, ” in IEEE RFIC Dig. Papers, 2009, pp. 459−462.
[50]T.-H. Lin and W. J. Kaiser, “A 900 MHz, 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[51]R. R.-B. Sheen, and O. T.-C Chen, “A CMOS PLL-based frequency synthesizer for wireless communication systems at 0.9, 1.8, 1.9 and 2.4 GHz,” 2001 IEEE International Symposium on Circuits and Systems Digest, vol. 4, pp. 722−725, 2000.
[52]Y. Sumi, and et al., “A new PLL frequency synthesizer using multi-programmable divider,” IEEE Transaction on Consumer Electrics, vol. 44, pp. 827−832, Aug. 1998.
[53]G.-Y. Tak, and et al., “A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications,” IEEE J. Solid-State Circuit, vol. 40, pp. 1671−1679, Aug. 2005.
[54]J. M. Ingino and V. R. von Kaenel, “A 4-GHz clock system for a high-performance system-on-a-chip design,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1693–1698, Nov. 2001.
[55]S. Steson, R.B. Brown, “A complementary GaAs PLL clock multiplier with wide-bandwidth and low-voltage operation,” 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Digest, pp. 317–320.
[56]B. Razavi, “A study of phase noise in CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331−343, Mar. 1996.
[57]B. Razavi, “Challenges in the design of frequency synthesizers for wireless applications,” in Proc. IEEE Custom Integrated Circuits Conf., 1997, pp. 395−402.
[58]B. D. Muer, M. Borremans, M. Steyaert, and G. L. Puma, Schoepf, “A 2 GHz low phase noise integrated LC-VCO set with flicker noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 1034−1038, Jan. 2000.
[59]C. M. Hung, K. K. O, “A packaged 1.1 GHz CMOS VCO with phase noise of −126 dBc/Hz at a 600 kHz offset,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 100−103, Jan. 2000.
[60]A. Hajimiri, T. H. Lee, “Design issue in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717−724, May 1999.
[61]M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019−1022, Aug. 1990.
[62]B. Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits, pp. 1−39, 1996, IEEE Press
[63]S. Kim, et al, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691−700, May. 1997.
[64]H. Kondoh et al, “A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-frequency detector,” IEICE Trans. Electron, vol. E78-C, no. 4, pp. 381−388, Apr, 1995.
[65]B. Razavi, Design of Integration Circuits for Optical Communications, McGraw-Hill, 2003.
[66]H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1021−1027, Aug. 2002.
[67]W. O. Keese, “An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops,” National Semiconductor Application Note, no. 1001, May 1996.
[68]B-Y Lin, and S-I Liu, “A 132.6 GHz phase-locked loop in 65nm digital CMOS”, IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 58, pp. 617−621, Oct. 2011.
[69]K. Tsutsumi, M. Komaki, M. Shimozawa, and N. Suematsu, “Low phase noise Ku-band PLL-IC with −104.5dBc/Hz at 10 kHz offset using SiGe HBT ECL PFD”, Proc. IEEE Asia Pacific Mcrowave Conference, 2008, pp. 373–376.
[70]J. Kim et al., “A 20-GHz phase-locked loop for 40-Gb/s serializing transmitter in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 899–908, Apr. 2006.
[71]Y.-H. Peng, and L.-H. Lu, “A Ku-Band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 256–258, Apr. 2007.
[72]Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 55, no.1, pp.44-51, Nov. 2007.
[73]O. Richard, A. Siligaris, F. Badets, C. Dehos, C. Dufis, P. Busson, P. Vincent, D. Belot, and P. Urard, “A 17.5-to-20.94 GHz and 35-to-41.88 GHz PLL in 65nm CMOS for wireless HD applications,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 252–253.
[74]Y. Ding, and K. K. O, “A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-mm CMOS ,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1240–1249, Jun. 2007.
[75]A. W. L. Ng, G. C. T. Leung, K.-C. Kwok, L. L. K. Leung, and H. C. Luong, “A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1236–1244, Jun. 2006.
[76]J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004–1015, May 2006.
[77]J. Lee and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May 2009.
[78]M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[79]R. Weber, U. Lewark, A. Leuther, and I. Kallfass, “A W-Band ×12 multiplier MMIC wirth excellent spurious suppression,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 212–214, Apr. 2011.
[80]T.-H. Tsai and S.-I. Liu, “A 43.7 mW 96 GHz PLL in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 276–277.
[81]Z. Chen and P. Heydari, “An 85–95.2 GHz transformer-based injection-locked frequency tripler in 65 nm CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., May, 2010, pp. 776–779.
[82]B. Floyd, S. Reynolds, U. Pfeiffer, T. Beukema, J. Grzyb, and C. Haymes, “A 60 GHz receiverand transmitter chipset for broadband communications in silicon,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 184–185.
[83]B. Mesgarzadeh and A. Alvandpour, “First-harmonic injection-locked ring oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., 2006, pp. 733−736.
[84]X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A study of subharmonic in jection locking for local oscillator,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp. 97–99, Mar. 1992.
[85]A. S. Daryoush, T. Berceli, R. Saedi, P. R. Herczfeld, and A. Rosen, “Theory of subharmonic synchronization of nonlinear oscillators,” in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp. 735–738.
[86]C.-C. Chen, C.-C. Li, B.-J. Huang, K.-Y. Lin, H.-W. Tsao, and H. Wang, “Ring-based triple-push VCOs with wide continuous tuning ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2173–2183, Sep. 2009.
[87]Y.-L. Tang and H. Wang, “Triple-push oscillator approach: theory and experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1472–1479, Oct. 2001.
[88]K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: a possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp.1578–1584, Sep. 1997.
[89]K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[90]M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[91]S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in IEEE RFIC Symp. Dig, Jun. 2008, pp. 131–134.
[92]F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-Harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[93]W.-L. Chan, and J.R. Long., “A 56-65 GHz injection-locked frequency tripler with quadrature output in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[94]C.-N. Kuo, and T.-Z. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
[95]Z. Chen and P. Heydari, “An 85–95.2 GHz transformer-based injection-locked frequency tripler in 65 nm CMOS,” in 2010 IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 776–779.
[96]吳翊碩,24 GHz汽車防撞雷達收發積體電路之研製,國立中央大學電機工程研究所碩士論文,民國98年
[97]S. C. Cripps, RF Power Amplifiers for Wireless Communications, Second Edition, Artech House, 2006.
[98]Steve Marsh, Practical MMIC Design, Artech House, 2006.
[99]George D. Vendelin, Microwave Circuit Using Linear and Nonlinear Techniques, Second Edition, John Wiley, New Jersey, 2005.
[100]Arshad Hussain, Advance RF Engineering for Wireless System and Networks, John Wiley, New Jersey, 2005.
[101]S. C. Cripps, Advanced Techniques in RF Power Amplifiers, Artech House, 2002
[102]A. Ghazinour, P. Wennekers, J. Schmidt, Y. Yin, R. Reuter, and J. Teplik, “A fully-monolithic SiGe-BiCMOS transceiver chip for 24 GHz applications,” in BTCM Proceedings. IEEE, pp. 181–184, Sep. 2003.
[103]A. Natarajan, A. Komijani, A. Hajimiri, “A fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec. 2005.
[104]C. Cao, Y. Ding, X. Yang, J.-J. Lin, A. K. Verma, J. Lin, F. Martin, and K.K. O, “A 24-GHz transmitter with an on-chip antenna in 130-nm CMOS,” in IEEE VLSI Circuits Symp. Dig., pp. 148–149, Jun. 2006.
[105]P. Zhao, H. Veenstra, J.R. Long, “A 24 GHz pulse-mode transmitter for short-range car radar ,” in IEEE RFIC Symp. Dig. Papers, 2007, pp. 379 – 382.
[106]R. Kozhuharov, A. Jirskog, N. Penndal, and H. Zirath, “Single-chip 24-GHz synthesizer for a radar application,” in CSIC Symp. Dig. IEEE, Nov. 2006, pp. 205–208.
[107]Y. Cao, M. Tiebout, and V. Issakov, “A 24 GHz FMCW radar transmitter in 0.13 μm CMOS,” in Proc. Eur. Solid-State Devices Research Conf., vol. 15–19, pp. 498–501, Sep. 2008.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2012-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明