博碩士論文 985201104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.207.255.49
姓名 李文賓(Wen-Ping Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高功率高效率放大器與振盪器研製
(Design of High Power and High Efficiency Power Amplifier and Power Oscillator)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 微波與毫米波寬頻主動式降頻器
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要討論運用於微波高功率高效率放大器及振盪器設計,使用橫向擴散金氧半場效應電晶體(LDMOS)元件及0.15 µm假晶式高速電子遷移率電晶體(PHEMT) 積體電路製程來實現。高功率電路最主要設計重點在於它的效率,如果效率低,將會產生過多的熱能使得系統溫度過高及消耗額外的直流功率,E類功率放大器的設計公式已經相當成熟,擁有高效率及架構簡單的優點,相當適合用於高功率高效率放大器及振盪器電路設計。
第一章為整篇論文之緒論,討論高功率高效率電路的發展現況及電晶體製作技術發展,第二章利用E類功率放大器設計公式製作應用於100 MHz之10與150 W功率放大器設計,其效率可達75%以上。第三章則進一步結合E類功率放大器的設計方法並結合回授網路,實現出高功率高效率之100 MHz 150及 300 W之功率振盪器,效率最高可達83%,距載波中心頻率(Offset Frequency)10 kHz,其相位雜訊分別可達-113.4 及-117.21 dBc/Hz。第四章則進一步利用放大器結合回授網路設計方法製作出全積體化高功率高效率功率振盪器,並利用於0.15 µm假晶式高速電子遷移率電晶體 (PHEMT) 製程設計出2.4及24 GHz之功率振盪器,2.4 GHz振盪器最大射頻功率輸出可達約27 dBm,最大效率可達48%,24 GHz振盪器最大效率可達23 dBm效率達15%。
摘要(英) This thesis emphasizes on high power high efficiency power amplifiers and power oscillators for microwave and millimeter-wave (MMW) applications. The circuits are designed and fabricated using laterally diffused metal oxide semiconductor (LDMOS) transistors and a 0.15 µm PHEMT technology. The dc-to-RF efficiency is an important specification for the high power circuits. If the efficiency is not high enough, the heating and dc power consumption both increase. The design equation of the class-E power amplifier is reliable. The class-E topology is appropriate for the high power high efficiency power amplifier and power oscillator because it has high efficiency characteristic and simple topology.
An introduction for the development of high power high efficiency circuits and transistor technologies are given in Chapter 1. In Chapter 2, using the class-E topology is adopted to design a 10 W and a 150 W power amplifiers at 100 MHz. The power amplifiers exhibit a maximum efficiency of higher than 75%. In Chapter 3, 100 MHz 150 and 300 W power oscillators have been presented by combining the topology of the class-E power amplifier structure and the feedback networks. The power oscillators exhibit a peak efficiency of 83%. The phase noises at 10 kHz offset of the 150 and 300-W power oscillators are -113.4 and -117.2 dBc/Hz, respectively. In Chapter 4, 2.4 and 24-GHz power oscillators are designed using a 0.15 µm PHEMT technology. The 2.4 GHz power oscillator achieves a maximum output power of 27 dBm and a maximum efficiency 52%. The 24-GHz power oscillator achieves a maximum output power of 23 dBm and a maximum efficiency 15%.
關鍵字(中) ★ E類功率放大器
★ LDMOS
★ 高功率高效率振盪器與放大器
關鍵字(英) ★ LDMOS
★ high power high efficiency oscillator and ampl
★ class E power amplifier
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1研究動機及背景 1
1.2相關研究與發展 1
1.3論文架構 2
第二章 高功率高效率功率放大器 4
2.1 簡介 4
2.2功率電晶體的現況 4
2.3 E類功率放大器原理 6
2.4 100 MHz 10 W功率放大器研製 10
2.4.1介紹 10
2.4.2電路設計 10
2.4.3 100 MHz 10 W的功率放大器模擬與量測結果 12
2.5 100 MHz 150 W功率放大器研製 15
2.5.1介紹 15
2.4.2 100 MHz 150 W的功率放大器模擬與量測結果 17
2.6 結論 23
第三章 混成式電路高功率與高效率振盪器 25
3.1簡介 25
3.2 100 MHz 150 W高功率高效率振盪器研製 27
3.2.1介紹 27
3.2.2 100 MHz 150 W的功率振盪器電路設計 27
3.2.3 100 MHz 150 W的功率振盪器模擬與量測結果 39
3.3 100 MHz 300 W高功率高效率振盪器研製 46
3.3.1介紹 46
3.3.2 100 MHz 300 W的功率振盪器電路設計 47
3.3.3 100 MHz 300 W的功率振盪器模擬與量測結果 53
3.4 結論 60
第四章 單晶微波積體電路高功率與高效率振盪器 61
4.1簡介 61
4.2 2.4 GHz高功率高效率振盪器研製 62
4.2.1介紹 62
4.2.2 2.4 GHz功率振盪器電路設計 62
4.2.3 2.4 GHz功率振盪器模擬與量測結果 69
4.2.4 實驗結果討論 75
4.3 24 GHz高功率高效率振盪器研製 77
4.3.1介紹 77
4.3.2 24 GHz功率振盪器電路設計 77
4.3.3 24 GHz功率振盪器模擬與量測結果 80
4.3.4 實驗結果討論 86
4.4 使用穩懋E/D-mode製作之高功率高效率功率振盪器 88
4.4.1介紹 88
4.4.2 使用穩懋E/D-mode製作之功率振盪器模擬與量測結果 89
4.4.3實驗結果討論 93
4.5 結論 94
第五章 結論 95
參考文獻 97
附錄一 各個電路的元件參考值 102
參考文獻 [1] N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, “Design of class E power VCO in 65nm CMOS technology: application to RF transmitter architecture,” IEEE International Midwest Symposium on Circuit and Systems, pp. 984−987, Jun. 2008.
[2] A. T. Zona, O. Calderion, J. V. Balbastre, and E. de los Resyes, “Wood timber disinfestation by microwave power application,” IEEE MTT-S International Microwave Symposium, pp. 1040-1043, May 2010.
[3] P. Kopyt and W. K. Gwarek, “High Q applications for microwave processes in material science,” IEEE MTT-S International Microwave Symposium, pp. 1048-1051, May 2010.
[4] Sanggeun Jeon, Almudena Suarez, and David B. Rutledge, “Nonlinear design technique for high-power switching-mode oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 3630-3640, October 2006.
[5] Woong Jae Hwang, Suk Woo Shin, Gil Wong Choi, Hyoung Jong Kim, and Jin Joo Choi, “High-efficiency power oscillator using harmonic-tuned matching network,” IEEE MTT-S. International Microwave Symposium Digest, pp. 1505-1508, June 2009.
[6] Suk Woo Shin, Gil Wong Choi, Hyoung Jong Kim, Su Hyun Lee, Sang Hoon Kim and Jin Joo Choi, “Frequency tunable high efficiency power oscillator using GaN HEMT,” IEEE MTT-S. International Microwave Symposium Digest, pp. 1000-1004, May 2010.
[7] G. D. Vendelin, A. M. Pavio, and U. L. Rohade, Design of Microwave Circuits Using Linear and Nonlinear Techniques, 2nd Edition, Wiley, 2005.
[8] R. Devine, and M. R. Tofighi, “Class E colpitts oscillator for low power wireless applications,” IET Electronics Lett., vol. 44, no, 21, pp.1257-1258, Oct. 2008.
[9] N. A. Sokal and A. D. Sokal, “Class E-a new class of high efficiency tuned single ended switching power amplifiers, ” IEEE Journal of Solid-Stae Circuits, vol.10, no. 3, pp. 168-176, Jun 1975.
[10] N. D. Lopez, J. Hoversten, M. Poulton, and Z. Popovic, “A 65W high efficiency UHF GaN power amplifier,” IEEE MTT-S International Microwave Symposium, pp. 65-69, June 2008.
[11] E. Khansalee, N. Puangngernmak, and S. Chalermwisutkul, “A high efficiency VHF GaN HEMT class E power amplifier for public and homeland security apllications,” IEEE Asia Pacific Microwave Conference Proceedings, pp. 437-441, Dec. 2010.
[12] M. Franco and A. Katz, “Class-E Silicon Carbide VHF Power Amplifier,” IEEE MTT-S International Microwave Symposium, pp. 19-23, June 2007.
[13] R. Beltran and F. H. Raab, “Lumped element output network for high efficiency power amplifiers,” IEEE MTT-S International Microwave Symposium, pp. 324-328, May 2010.
[14] F. J. O. Gonzalez, “High power wideband class E power amplifier,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 10, pp. 569-572, Oct. 2010.
[15] A. V. Grebennikov, “Circuit design technique for high efficiency class F amplifiers,” IEEE MTT-S International Microwave Symposium, pp. 771-774, June 2000.
[16] F. H. Raab, “Broadband class E power amplifier for HF and VHF,” IEEE MTT-S International Microwave Symposium, pp. 902-905, June 2006.
[17] J.He and D. Ren, “An LDMOS class E power amplifier designed by source/load pull technique,” IEEE International Conference on Communication Circuits and Systems, pp.742-745, July 2009.
[18] M. Mizan, D. Sturzbecher, T. Higgins, and A. Paolella, “An X-band, high power dielectric resonator oscillator for future military systems,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, no. 5, pp. 483-487, Sept. 1993.
[19] A. Gitsevich, D. Kirkpatrick, and L. Dymond, “Solid-state high power RF oscillator,” IEEE MTT-S. International Microwave Symposium Digest, vol. 3, pp. 1423-1426, May 2001.
[20] M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov,“Class-E MOSFET tuned power oscillator design procedure,”IEEE Transactions on Circuits and Systems, vol. 52, no. 6, pp. 1138-1147, June 2005.
[21] Qingyun Ma, Haider, Mohammad R., Yuan, Song, Islam, and Syed K., “Power oscillator based high efficiency inductive power link for transcutaneous power transmission,” IEEE International Midwest Symposium on Circuit and Systems, pp. 537−540, Aug. 2010.
[22] Hagert, J.A. and Popovic, Z, “A 10 GHz integrated class E oscillating annular ring element for high-efficiency transmitting arrays,” IEEE MTT-S. International Microwave Symposium Digest, pp. 1317–1320, 2002.
[23] M. J. Chudobiak, “The use of parasitic nonlinear capacitors in Class E Amplifiers,” IEEE Transactions on Circuits and Systems I, vol. 41, pp. 941-944, Dec. 1994.
[24] R. E. Zulinski and J. K. Steadman, “Class E Power Amplifiers and Frequency Multipliers with finite DC-feed inductance,” IEEE Transactions on Circuit and Systems, vol. 34, no. 9, pp. 1074-1087, Sep. 1987.
[25] E. W. Bryerton, W. A. Shiroma, and Z. B. Popovic,“A 5-GHz high efficiency class-E oscillator,” IEEE Microw. Guided Wave Lett., vol. 6, no. 12, pp. 441–443, Dec. 1996.
[26] M. Prigent, M. Camiade, G. Pataut, D. Reffet, J. M. Nebus, and J. Obregon, “High efficiency free running class F oscillator,” IEEE MTT-S. International Microwave Symposium Digest, pp. 1317–1320, May 1995.
[27] J. Ebert and M. Kazimierczuk, “Class E high efficiency tuned power oscillator,” IEEE Journal of Solid -Stae Circuits, vol. 16, no. 2, pp. 62-66, Apr. 1981.
[28] D. V. Chernov, M. K. Kazimierczuk, and V. G. Krizhanovski, “Class E MOSFET low voltage power oscillator,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 509-512, 2002.
[29] E. W. Bryerton, W. A. Shiroma, and Z. B. Popovic, “A 5 GHz high efficiency class E oscillator,” IEEE Microwave and Wireless Components Letters, vol. 6, no. 12, pp. 441-443, Dec. 1996.
[30] M. Prigent, M. Camiade, G. Pataut, D. Reffet, J. M. Nebus, and J. Obregon, “High efficiency free running class F oscillator” IEEE MTT-S. International Microwave Symposium Digest, pp. 1317-1320, May 1995.
[31] A. Gitsevich, D. Kirkpatrick, and L. Dymond, Jr., “Solid-state high power RF oscillator,” IEEE MTT-S. International Microwave Symposium Digest, pp. 423-1426, May 2001.
[32] M.-Q. Lee, S.-J. Yi, S. Nam, Y. Kwon, and K.-W. Yeom, “High-efficiency harmonic loaded oscillator with low bias using a nonlinear design approach,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1670-1679, Sep. 1999.
[33] S. V. Hoeye, F. Ramirez, and A. Suarez, “Nonlinear optimization tools for the design of high-efficiency microwave oscillators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 5, pp. 189-191, May 2004.
[34] A. Massari and E. Limiti, “High efficiency oscillator design adopting harmonic tuning,” IET Electronics Letters, vol. 47, no. 3, Feb. 2011.
[35] H. I. Cantú, T. Mury and V. F. Fusco, “Inverse Class E Amplifier and Oscillator Phase Noise Characteristics,” IEEE European Microwave Conference, pp. 740-743, Oct. 2007.
[36] Y. S. Jeon, H. S. Yang, and S. Nam, “A novel high efficiency linear transmitter using injection locked pulsed oscillator,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 4, pp. 214-216, April 2005.
[37] Sanabria, C., Hongtao Xu, and Heikman, S., “A GaN differential oscillator with improved harmonic performance,” IEEE Microwave and Wireless Components Letters, vol. 15 no.7, pp. 463-465, July 2005.
[38] V. S. Kaper, , V. Tilak, Hyungtak Kim, Vertiatchikh, A.V., Thompson, R.M., Prunty, T.R., Eastman, and L.F., Shealy, J. R., “High power monolithic AlGaN/GaN HEMT oscillator,” IEEE Journal of Solid-State Circuits, vol. 38 no. 9, pp. 1457-1461, Sep. 2003 .
[39] Hongtao Xu, Christopher Sanabria, Sten Heikman, Stacia Keller, Umesh K. Mishra, and Robert A. York, “High power GaN oscillators using field-plated HEMT structure, ” IEEE MTT-S. International Microwave Symposium Digest, pp. 1345-1348, June 2005.
[40] Y. Z. Xiong, “On chip transformer-based feedback CMOS power oscillator,” IET Electronics Letters, vol. 41 no. 3, pp. 135-137, Feb. 2005.
[41] C. H. Lee, A. Sutono, and J. Laskar, “Development of a high power and high efficiency HBT MMIC VCO,” Radio and Wireless Conference, pp. 157-160, Aug. 2001.
[42] C. Florian, P. A. Reaverso, M. Feudale, and F. Filicori, “A C band GaAs pHEMT MMIC low phase noise VCO for space applications using a new cyclostationary nonlinear noise model,” IEEE MTT-S. International Microwave Symposium Digest, pp. 284-288, May 2010.
[43] J. S. Kim, W. Wu, J. Lin, A. Verma, S. Jang, F. Ren, and S. Pearton, “A high efficiency GaN/ALGaN HEMT oscillator operating at L band,” IEEE Asia Pacific Microwave Conference, pp. 631-635, Dec. 2006.
[44] H. Wang, E. Lin, D.C. W. Lo, R. Lai, L.Tran, J. Cowles Y. C.Chen, T. Block, P. H. Liu, H.C.Yen, and K. Stamper, “A monolithic 24-GHz frequency source using InP-based HEMT-HBT integration technology,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 79-81, June 1997.
[45] Ogawa, K., Ikeda, H., Ishizaki, T., Hashimoto, K., and Ota. Y.,“25 GHz dielectric resonator oscillator using an AlGaAs/GaAs HBT,” IET Electionics Letters, vol. 26, no. 18, pp. 1514-1516, Aug. 1990.
[46] W.K. Huang, Y.A. Liu, C. M. Wang, Y.M. Hsin, C. Y. Liu, and T.J. Yeh,“Flip-chip assembled GaAs pHEMT Ka band oscillator,” IEEE Microwave and Wireless Component Letters, vol. 17, no. 1, pp. 67-69, Jan. 2007.
[47] S.G. Park, J.H. Kim, S.W. Kim, K.S. Seo, W.B. Kim, and J.I. Song ,“A Ka-band MMIC oscillator utilizing a labyrinthine PBG resonator,” IEEE Microwave and Wireless Component Letters, vol. 15, no. 11, pp. 727-729, Nov. 2005.
[48] Belinda Piernas, Kenjiro Nishikawa, Tadao Nakagawa, and Katsuhiko Araki, “A compact and low-phase-noise Ka band pHEMT based VCO,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 778-783, March 2003.
[49] S. Jeon and D. B. Rutledge, “A 2.7-kW, 29-MHz Class-E/Fodd Amplifierwith a Distributed Active Transformer,” IEEE MTT-S International Microwave Symposium, pp. 1927-1930, June 2005.
[50] N. Kumar, C. Parakash, A. Grebennikov, and A. Mediano, “High efficiency broadband parallel circuit class E RF power amplifier with reactance compensation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 3, pp. 604-612, march 2008.
[51] N. Dye and H. Granberg, “Radio frequency transistors principles and practical application,” 2nd Ed., Newnes, 2001.
[52] M. K. Kazimierczuk, “RF power amplifiers,” John Wiley & Sons, Inc., 2008.
[53] N. O. Sokal, “Switchmode RF power amplifiers,” Newnes, 2007.
[54] A. Grebennikov, “RF and microwave transistor oscillator design,” John Wiley & Sons, Inc., 2007.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2011-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明