博碩士論文 985201106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:35.170.81.210
姓名 楊安凱(An-kai Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用缺陷地面共振電路之介質量測技術
(Dielectric Measurement Technique using Defected-ground Resonant Circuits)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線
★ 帶通圓形極化頻率選擇面之設計★ 啞鈴型缺陷地面之介質量測電路分析與設計
★ 雙頻圓極化微波極化器設計★ 利用微小共振電路之多頻段天線設計
★ 應用於X-band平面吸波器之薄型負載電路設計★ 應用於X-band平面吸波器之阻抗倒轉器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一套新的介質量測技術,以一個雙埠的缺陷地面之共振器當作感測器,主要是設計缺陷地面形狀後,把待測介質樣本置於缺陷地面電路下,使用感測器與待測物之間的地面孔徑耦合效應來達到介質量測的目的。本研究的目的有二個,其一為設計適合的共振電路與新的電路量測校準技術,其二為藉由已知介質樣品的量測,來建立經驗修正模式與反演程序。在電路設計時,透過板材選用來設計出合適的感測器,本次設計的啞鈴形缺陷地面結構感測器,經由介質量測所得透射係數的響應,其等效電路中電容量測介電係數,而電感來量磁導係數的方式,可同時得知低損耗性待測物的介電係數與磁導係數。在U形缺陷地面結構感測器的部分,經由介質量測所得透射係數的響應,使用傳輸零點位移後的頻率反演待測物之介電係數,以及等效電路中電阻來量待測物之正切損耗,可同時得知非磁性待測物的介電係數與正切損耗。本文中使用電磁模擬軟體HFSS完成缺陷地面結構感測器的設計,藉由實作量測待測物之介電係數、磁導係數與正切損耗的結果,驗證設計的正確性。
摘要(英) In this thesis, a new dielectric measurement technique is proposed. The proposed dielectric measurement technique is mainly composed of DGS (defected ground structure). The signal is coupled to the DUT (dielectric under test) from top layer to the bottom layer through the slot aperture on the ground. There are two purposes in research. One of the two purposes is the design of the resonant circuit and the measurement calibration technique. The other of the two purposes is to measure samples, create empirical correction model and inverse algorithm. The dumbbell-shaped DGS sensor is proposed for dielectric and magnetic constants. By measuring the resonant and cut-off frequency with the DUT attached to the sensor, the dielectric and magnetic constants of the DUT can be deduced from the equivalent capacitance and inductance, respectively. The U-shaped DGS sensor is also introduced for measuring the dielectric constant and loss tangent of the DUT. The dielectric constant and loss tangent are to be obtained from the shift of the resonant frequency and the different of the magnitude of the insertion loss, respectively. The simulation results are conducted by using the full-wave simulator, HFSS. The simulated and measured results are in good agreement.
關鍵字(中) ★ 缺陷地面結構 關鍵字(英) ★ defected ground structure
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 vi
表目錄 xi
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3章節介紹 7
第二章 研究方法 8
2.1 選擇適當的雙埠(two-port)缺陷地面共振電路 8
2.2 缺陷地面電路元件對待測參數的敏感度先期觀察 11
2.3 建立正向關係模式與量測校準技術 19
2.4 建立反演程序與經驗修正模式 22
第三章 模擬與設計 24
3.1 感測區域靈敏度分析 24
3.2 量測未知物質的介電係數與磁導係數設計 27
3.2.1 板材選用 27
3.2.2 等效電路 30
3.2.3 啞鈴形缺陷地面結構感測器設計與建立正向關係模式 33
3.3 量測非磁性物質的介電係數設計 39
3.3.1 板材選用 39
3.3.2 U形缺陷地面結構感測器設計與建立正向關係模式 44
3.4 量測非磁性物質的正切損耗設計 48
3.4.1 板材選用 48
3.4.2 等效電路 55
3.4.3 U形缺陷地面結構感測器設計與建立正向關係模式 58
第四章 感測器實作與量測 65
4.1 鐵弗龍與電路板的介電係數與磁導係數之量測 65
4.1.1 啞鈴形缺陷地面結構感測器實作與量測 66
4.1.2 量測校準 69
4.1.3 反演程序 73
4.1.3.1 量測鐵弗龍之反演結果 76
4.1.3.2 量測RO4003之反演結果 78
4.1.3.3 量測FR4之反演結果 80
4.1.3.4 量測RO3010之反演結果 86
4.1.3.5量測木頭之反演結果 88
4.2 量測非磁性物質的介電係數實作 90
4.2.1 U形缺陷地面結構感測器實作與量測 90
4.2.2 量測校準與經驗修正模式 93
4.2.3 反演程序 95
4.3 量測非磁性物質的正切損耗實作 106
4.3.1 U形缺陷地面結構感測器實作與量測 107
4.3.2 量測校準與經驗修正模式 110
4.3.3 反演程序 112
4.4 結論 126
第五章 總結 127
參考文獻 128
參考文獻 [1]W. Xi, W. R. Tinga, W. A. G. Voss, and B. Q. Tian, “New results for coaxial re-entrant cavity with partially dielectric filled gap,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 4, pp. 747–753, Apr. 1992.
[2]M. D. Janezic, E. F. Kuester, and J. Baker-Jarvis, “Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Fort Worth, TX, Jun. 2004, pp. 1817–1820.
[3]K. M. C. Branch, J. Morsey, and A. C. Cangellaris, “Physically consistent transmission line models for high-speed interconnects in lossy dielectrics,” IEEE Trans. Adv. Packag., vol. 25, no. 2, pp. 129–135, Aug. 1990.
[4]R. Djordjevic´ and R. M. Biljic´, “Wideband frequency-domain characterization of FR-4 and time-domain causality,” IEEE Trans. Electromagn.Compat., vol. 43, no. 4, pp. 662–667, Nov. 2001.
[5]J. Baker-Jarvis and E. J. Vanzura, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096–1103, Aug. 1990.
[6]K. Staebell, M. Noffke, and D. Misra, “On the in situ probe method for measuring the permittivity of materials at microwave frequencies,” in Proc. IEEE. Instr. Meas. Technol. Conf., 1990, pp. 28–31.
[7]S. B. Kumar, U. Raveendranath, P. Mohanan, and K. T. Mathew, “A simple free-space method for measuring the complex permittivity of single and compound dielectric materials,” Microw. Opt. Technol. Lett., vol. 26, no. 2, pp. 117–119, Jul. 2000.
[8]P. K. Singh et al., “High frequency measurement of dielectric thin films,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., San Diego, CA, May 1994, pp. 1457–1460.
[9]W. Williamson, III et al., “High frequency dielectric properties of thin film PZT capacitors,” Integrated Ferroelectronics, vol. 10, pp. 335–342, 1995.
[10]R. Voelker, G. Lei, G. Pan, and B. Gilbert, “Determination of complex permittivity of low-loss dielectrics,” IEEE Trans. Microw. TheoryTech., vol. 45, no. 10, pp. 1995–1960, Oct. 1997.
[11]W.B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE, vol. 62, pp. 33-36, Jan. 1974.
[12]Chao-Hsiung Tseng,and Tah-Hsiung Chu, “Measurement of frequency-dependent equivalent width of substrate integrated waveguide,” IEEE Trans. Microw. TheoryTech., vol. 54, no. 4, pp. 1431–1437, Apr. 2006.
[13]A. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 1, pp. 52-57, Jan. 1997.
[14]C. H. Riedell, M. B. Steer, M. R. Kay, J. S. Kasten, M. S. Basel, and R. Pomerleau, “Dielectric characterization of printed circuit board substrates,” IEEE Trans. Instr. Meas., vol. 39, no. 2, pp. 437-440, Apr. 1990.
[15]M. J. Hill, and L. E. Wojewoda, “A study of permittivity measurement reproducibility utilizing the Agilent 4291B,” IEEE Trans.Adv. Packag., vol. 29, no. 4, pp. 714–718, Nov. 2006.
[16]K.-P. Lätti, M. Kettunen, Juha-Pekka Ström, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instr. Meas., vol. 56, no. 5, pp. 1845-1850, Oct. 2007.
[17]H. Suzuki and T. Kamijo, “Millimeter-wave measurement of complex permittivity by perturbation method using open resonator,” IEEE Trans. Instr. Meas., vol. 57, no. 12, pp. 2868-2873, Dec. 2008.
[18]Z. Guo, G. Pan, S. Hall, and C. Pan, “Broadband characterization of complex permittivity for low-loss dielectrics: circular PC board disk approach,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3126–3135, Oct. 2009.
[19]Agilent 4291B RF Impedance/Material Analyzer Operation Manual, 5th ed. Palo Alto, CA: Agilent Technologies, 2002.
[20]Agilent Technologies Impedance Measurement Handbook. Palo Alto, CA: Agilent Technologies, 2000.
[21]D. I. Amey and J. P. Curilla, “Microwave properties of ceramic materials,” in Proc. 41st Electron. Compon. Technol. Conf., May 1991, pp. 267–272.
[22]D. I. Amey and S. J. Horowitz, “Materials performance at frequencies up to 20 GHz,” in Proc. IEMT/IMC Symp., Apr. 1997, pp. 331–336.
[23]J. Carroll, M. Li, and K. Chang, “New technique to measure transmission line attenuation,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 1, pp. 219–222, Jan. 1995.
[24]Kengyi Huang and Tsenchieh Chiu, “ LTCC wideband filter design with selectivity enhancement, ” IEEE Microwave and Wireless Components Lett., vol. 19, no. 7, pp. 452-454, July 2009.
[25]Kamal Sarabandiand Eric S. Li, “ Microstrip ring resonator for soil moisture measurements, ” IEEE Trans. Geosci. Remote Sensing, vol. 15, no. 5, pp. 1223-1231, Sept. 1997.
[26]D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure, ” IEEE Trans. Microw. Theory Theory Tech., vol. 49, no 1, pp. 86-93, Jan. 2001.
[27]Duk-Jae Woo and Taek-Kyung Lee, “High-Q band rejection filter by using U-slot DGS, ” Microwave conference, vol 2, no. 4,April 2006.
[28]Yuchun Guo and Qing Wang, “An improved Equivalent circuit parameters extraction method for dumbbell-shape DGS, ”IEEE Microwave Technology and Computational Electromagnetics, vol 10, no 11,pp.166-168,Nov. 2009.
[29http://www.esss.com.br/events/ansys2010/pdf/22_6_1150.pdf
[30]http://www.rogerscorp.com/
[31]http://www.kinsten.com.tw/
[32]http://www.home.agilent.com/
指導教授 丘增杰(Tsen-chieh Chiu) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明