博碩士論文 985201114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.20.205.228
姓名 林昱齊(Yu-Chi Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 分佈式類比相位偏移器之設計與製作
(Design and Fabrication of Distributed Analog Phase Shifters)
相關論文
★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升★ 全通網路相位偏移器之設計與製作
★ 使用可調式負載及面積縮放技巧提升功率放大器之效率★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現
★ 應用於極座標發射機之高效率波包放大器與功率放大器★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現
★ 鐵電可變電容之設計與製作★ 用於功率放大器效率提升之鐵電基可調式匹配網路
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相位偏移器經常用於通訊及雷達的相位陣列天線之中。在一個典型的相位陣列之中,通常會需要為數眾多的相位偏移器。使用單石微波積體電路來實現相位偏移器,有助於相位陣列之微小化。
首先我們使用TSMC 0.35-μm SiGe BiCMOS製程來實現一X頻段相移人工傳輸線。在頻率11 GHz下的量測結果顯示,偏壓於0至3.3 V間,此電路可提供46度的相位偏移量。其返回損耗皆大於12 dB,最差之插入損耗及P1dB點分別為6.3 dB、11.7 dBm。
接著我們採用WIN 0.15-μm GaAs pHEMT製程來實現一Ku頻段分佈式相位偏移器。在頻率13 GHz下的量測結果顯示,此相位偏移器在操作偏壓0 – 1.8 V下可提供60.5度的相位偏移,且返回損耗皆大於15 dB。最差的插入損耗及P1dB點分別為1.9 dB及10.7 dBm。
在分佈式類比相位偏移器中,可變電容是不可或缺的電路元件。雖然傳統的變容二極體被廣泛使用,但鐵電可變電容亦是一個具有潛力的可變電容技術,在微波頻段有低損耗以及高可調度的優點。在本論文中,我們製作以鐵電材料鈦酸鍶鋇薄膜為基礎的共平面波導傳輸線,並將之用於薄膜電性的萃取。我們量測共平面波導傳輸線的S參數量測並與全波電磁模擬結果比較,萃取出BST介電常數約為300,正切損耗約為0.1。
我們以兩種不同積體電路製程設計並實現了分佈式類比相位偏移器晶片,有助於相位陣列系統之微小化。我們並發展了鐵電薄膜製程,製作以鐵電薄膜為基礎的共平面波導傳輸線,將之用於薄膜高頻電性之萃取。這個工作是未來進行鐵電可調式微波電路設計的基礎。
摘要(英) Phase shifters are indispensable components in modern radar and communications phased-array antenna systems. A typical phased array employs a large number of phase shifters. Using MMIC technology to implement the phase shifters helps the miniaturization of phased-array systems.
In this thesis, two distributed analog phase shifters implemented using two different IC processes are introduced. First, we design an X-band phase shifter based on artificial transmission lines using TSMC 0.35-μm SiGe BiCMOS process. The measurement results at 11 GHz show that, biased between 0 and 3.3 V, the circuit provides a phase shift of 46° and its return losses are greater than 12 dB. At 11 GHz, the measured maximum insertion loss and the minimum input P1dB of the phase shifter are 6.3 dB and 11.7 dBm, respectively.
Next, a Ku-band distributed phase shifter is designed and implemented using WIN 0.15-μm GaAs pHEMT technology. The measurement results at 13 GHz show that, biased between 0 and 1.8 V, the circuit exhibits a phase shift of 60.5°, a maximum insertion loss of 1.9 dB, an input P1dB of 10.7 dBm, and a return loss greater than 15 dB.
In distributed analog phase shifters, variable capacitors are indispensable circuit elements. Though conventional varactor diodes are most widely used for implementing the variable capacitors in phase shifter design, ferroelectric varactor technology offers a viable and potentially better alternative, having the advantages of low loss and high tunability in microwave regime. In this thesis, we fabricate coplanar waveguide (CPW) transmission lines based on ferroelectric barium strontium titanate (BST) thin films and use the CPW lines for extracting the electrical properties of the BST thin films. The S parameters of the CPW lines are measured and carefully compared with full-wave electromagnetic simulation results. The extracted dielectric constant and loss tangent of the BST thin films are approximately 300 and 0.1, respectively.
In summary, we have designed and implemented distributed analog phase shifters using two different IC processes. Implementing phase shifters in MMIC forms helps to miniaturize phased-array systems. We have also developed a ferroelectric thin-film fabrication process. Based on the thin-film process, we have fabricated CPW lines and used them in the extraction of electrical properties of the films. This work provides a basis for ferroelectric-based tunable microwave circuit design in the future.
關鍵字(中) ★ 鈦酸鍶鋇
★ 分佈式
★ 相位偏移器
關鍵字(英) ★ BaSrTiO3
★ distributed
★ phase shifter
論文目次 摘要.................................................I
Abstract.............................................II
致謝.................................................IV
目錄.................................................VI
圖目錄...............................................VIII
表目錄...............................................XI
第一章 緒論.........................................1
1-1 研究動機.........................................1
1-2 相關研究文獻回顧.................................2
1-3 論文架構.........................................4
第二章 X頻段相移人工傳輸線..........................5
2-1 簡介.............................................5
2-2 人工傳輸線的原理與介紹...........................5
2-3 X頻段相移人工傳輸線設計與分析....................8
2-4 X頻段相移人工傳輸線模擬與量測結果................15
2-4-1 量測與模擬結果.................................15
2-4-2 量測與模擬結果差異之分析.......................20
2-5 結論.............................................28
第三章 Ku頻段分佈式類比相位偏移器.................. 29
3-1 簡介.............................................29
3-2 分佈式相位偏移器的原理與介紹.....................29
3-3 分佈式相位偏移器的分析與設計.....................31
3-4 Ku頻段分佈式類比相位偏移器設計...................34
3-5 Ku頻段分佈式類比相位偏移器模擬與量測結果.........43
3-5-1 量測與模擬結果比較.............................43
3-5-2 量測與模擬結果差異之分析.......................49
3-6 結論.............................................56
第四章 鐵電材料鈦酸鍶鋇介電常數萃取.................58
4-1 簡介.............................................58
4-2 鐵電可變電容介紹.................................59
4-3 鈦酸鍶鋇薄膜介電常數萃取.........................62
4-3-1 CPW傳輸線製作流程..............................62
4-3-2 CPW傳輸線模擬結果比較..........................65
4-3-3 CPW傳輸線量測結果及薄膜參數萃取................70
4-4 結論.............................................74
第五章 結論與未來展望................................75
附錄.................................................78
參考文獻.............................................80
參考文獻 [1] F. Ellinger, U. Mayer, M, Wickert, N. Jorem, J. Wagner, R. Eickhoff, I. Santamaria, C. Scheytt, and R. Kraemer, “Integrated adjustable phase shifters,” IEEE Microwave Magazine, vol. 11, no. 6, pp. 97–108, 2010.
[2] F. Ellinger and W. Bachtold, “Novel principle for vector modulator based phase shifter operating with one control range,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1256–1259, Oct. 2002.
[3] P.-Y. Chen, T.-W. Hung, H. Wang, Y.-C. Wang, C.-H. Chen and P.-C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Micro. Theory Tech., vol. 52, no. 5, pp. 1414–1424, May 2004.
[4] J. I. Upshur and B. D. Geller, “Low-loss 360° X-band analog phase shifter,” IEEE MTT-S International Microwave Symposium, vol. 1, pp. 487–490, 1990.
[5] F. Ellinger, R. Vogt and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
[6] S. Nam, A. W. Payne and I. D. Robertson, “RF and microwave phase shifter using complementary bias techniques,” IET Electron. Lett., vol. 37, no. 18, pp. 1124–1125, Aug. 2001.
[7] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks”, IEEE MTT-S Int. Micro. Symp. Dig., vol. 1, pp. 265–268, 1991.
[8] C. F. Campbell and S. A. Brown, “A compact 5-bit phase-shifter MMIC for K-band satellite communication systems,” IEEE Trans. Micro. Theory Tech., vol. 48, no. 12, pp. 2652 –2656, Dec. 2000.
[9] H. Hayashi, T. Nakagawa and K. Araki, “A miniaturized MMIC analog phase shifter using two quarter-wave-length transmission line,” IEEE Trans. Micro. Theory Tech., vol. 50, no. 1, pp. 150–154, Jan. 2002.
[10] F. Ellinger, H. Jackel, and W. Bachtold, “Varactro-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Micro. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[11] A. S. Nagra, and R. A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Micro. Theory Tech., vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[12] Borgioli, Y. Liu, A. S. Nagra, and R. A. York, “Low-loss distributed MEMS phase shifter,” IEEE Micro. Guided Lett., vol. 10, no. 1, pp. 7–9, Jan. 2000.
[13] J. S. Hayden and G. M. Rebeiz, “2-bit MEMS distributed X-band phase shifters,” IEEE Micro. Wireless Compon. Lett., vol. 10, no. 12, pp. 540–542, Nov. 2000.
[14] B. Acikel and R. A. York, “A new X band 180° high performance phase shifter using (Ba,Sr)TiO3 thin films,” IEEE MTT-S Int. Micro. Symp. Dig., vol. 3, pp. 1467-1469, Jan. 2002.
[15] G. Velu, K. Blary, L. Burgnies, J. C. Carru, E. Delos, A. Marteau, and D. Lippens, “A 310°/3.6-dB K-band phase shifter using paraelectric BST thin films,” IEEE Micro. Wireless Compon. Lett., vol. 16, no. 2, pp. 87–89, Feb. 2006.
[16] M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou, J. Binder, and R. Jakoby, “Low-cost phase-array antenna using compact tunable phase shifters based on ferroelectric ceramics,” IEEE Trans. Micro. Theory Tech., vol. 59, no. 5, pp. 1265–1273, May 2011.
[17] A. Tombak, J.-P. Maria, F. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Voltage-controlled RF filters employing thin film barium strontium titanate tunable capacitors,” IEEE Trans. Micro. Theory Tech., vol. 51, no. 2, pp. 462–467, Feb. 2007.
[18] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, “A ferroelectric-based impedance tuner for adaptive matching applications,” IEEE MTT-S Int. Micro. Symp. Dig., pp. 955–958, June 2008.
[19] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005
[20] M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman, and K. S. Giboney, “GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling,” IEEE Trans. Micro. Theory Tech., vol. 39, pp. 1194–1204, July 1991.
[21] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela, and J. Esch, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics,” Proc. IEEE, vol. 82, pp. 1035–1059, July 1994.
[22] F. Ellinger, R. Vogt, and W. Bachtold, “Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band,” IEEE Micro. Wireless Compon. Lett., vol. 11, no. 3, pp. 104–105, Mar. 2001.
[23] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective type phase shifter MMIC for C-band using a lumped element coupler,” IEEE Trans. Micro. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[24] J. Park, J. W. Lu, D. S. Boesch, S. Stemmer and R. A. York, “Distributed phase shifter with pyrochlore bismuth zinc niobate thin films,” IEEE Micro. Wireless Compon. Lett., vol. 16, no. 5, pp. 264–266, May 2006.
[25] N. S. Barker and G. M. Rebeiz, “Optimization of distributed MEMS transmission-line phase shifters–U-band and W-band designs,” IEEE Trans. Micro. Theory Tech., vol. 48, no. 11, pp. 1957–1966, Nov. 2000.
[26] Y. Lu, “RF MEMS devices and their applications in reconfigurable RF/microwave circuits,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, USA, 2005.
[27] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, “Improving the linearity of ferroelectric-based microwave tunable circuits,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 2, pp. 354–360, Feb. 2007.
[28] J.-H. Joo, J.-M. Seon, Y.-C. Jeon, K.-Y. Oh, J.-S. Roh, and J.-J. Kim, “Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt capacitors,” Applied Physics Letters, vol. 70, no. 22, pp. 3053–3055, June 1997.
[29] J.-J. Hung, “Ku- to W-band SiGe RFIC and RF MEMS sub-systems,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, USA, 2005.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2011-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明