博碩士論文 985201122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.228.194.177
姓名 鄒明儒(Ming-Ju Tsou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可調式雙模態帶通濾波器之研究
(Reconfigurable dual-mode bandpass filters)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
★ 使用步階式阻抗共振器實現於微小化準八木天線設計★ 利用步階式阻抗共振器之多頻與寬頻共平面波導饋入槽孔偶極天線設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用雙模態環形共振器為基底,分別設計出微小化之可開關型寬止帶帶通濾波器與可調式的雙模態環形帶通濾波器。
利用奇偶模的分析方式,將可計算出所需要的耦合電容和傳輸零點所在的頻率位置,以及3-dB頻寬。適當的擺放p-i-n二極體將使得濾波器擁有可開關的特性。此外,利用混合型的低通濾波器來實現雙模態帶通濾波器,即能有效的縮小電路面積和提升止帶頻寬。整體電路面積為0.023λg2,在通帶開啟的情況,止帶在7.7倍的中心頻率以前能壓抑到20dB以下,而在通帶關閉的情況,止帶在7.48倍的中心頻率以前能壓抑到20dB以下。
由於傳統的環形共振器其中心頻率、耦合係數、外部品質因子皆可利用電容來單獨的控制,故利用變容二極體來取代電容,將可實作出可調式的雙模態環形帶通濾波器。可調整的中心頻率為0.88GHz到0.74GHz(17.35%),而可調整的頻寬比為21.43%到4.24%(5.06:1)。
摘要(英) Based on dual-mode ring resonator, compact switchable bandpass filter with wide stopband and tunable dual-mode ring bandpass filter are designed individually in this thesis.
By using even- and odd-mode technique, we can calculate the value of required coupling capacitor, the positions of transmission zeros, and where 3-dB bandwidth is. When p-i-n diodes are loaded on the circuits appropriately, the proposed filters feature switch abilities. In addition, dual-mode bandpass filter is implemented using mixed lowpass filter so that the circuit size can be miniaturized effectively and widen the stopband further. The overall circuit size is 0.023λg2. The stopband can reach up to 7.7f0 with 20-dB rejection level when the passband is turned on. On the other hand, the stopband is 7.48f0 with 20-dB rejection level when the passband is shut down.
In the case of conventional ring resonator, center frequency, coupling coefficients, and external quality factor can be controlled by capacitors separately. Therefore, varactors are used to take the place of capacitors to fabricate the proposed tunable dual-mode ring bandpass filter. Adjust range of center frequency varies from 0.88GHz to 0.74GHz (17.35%) and that of bandwidth differs from 21.43% to 4.24% (5.06:1).
關鍵字(中) ★ 可調
★ 雙模態
★ 帶通濾波器
關鍵字(英) ★ reconfigurable
★ dual mode
★ bandpass filters
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 4
第二章 雙模態環形共振器與三叉形模型的分析 5
2.1 簡介 5
2.2 雙模態環形共振器的分析 5
2.3 三叉形模型的分析 13
第三章 微小化之可開關型的寬止帶帶通濾波器 18
3.1 簡介 18
3.2 設計 18
3.2.1 傳統式的可開關型帶通濾波器 19
3.2.2 微小化之可開關型的寬止帶帶通濾波器 24
3.3 結論 34
第四章 可調式的雙模態環形帶通濾波器 36
4.1 簡介 36
4.2 設計 36
4.3 量測與模擬 39
4.4 結論 49
第五章 結論 50
參考文獻 51
參考文獻 [1] J. S. Hong and M. J. Lancaster, “Bandpass characteristics of new dual-mode microstrip square loop resonators,” Electron. Lett., vol. 31, no. 11, pp. 891-892, May 1995.
[2] A. Görür, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 671-677, Feb. 2004.
[3] A. C. Kundu and I. Awai, “Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1113-1117, Jun. 2001.
[4] S. Amari, “Comments on “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications”,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2190-2192, Sep. 2004.
[5] M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1235-1240, Jul. 2001.
[6] L. H. Hsieh and K. Chang, “Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap,” Electron. Lett., vol. 36, no. 19, pp. 1626-1627, Sep. 2000.
[7] Y. H. Jeng, S. F. R. Chang, Y. M. Chen, and Y. J. Huang, “A novel self-coupled dual-mode ring resonator and its applications to bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2146-2152, May 2006.
[8] L. Zhu, B. C. Tan, and S. J. Quek, “Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 22-24, Jan. 2005.
[9] L. Zhu, P. M. Wecowski, and K. Wu, “New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 650-654, May 1999.
[10] C. Karpuz, G. M. Eryilmaz, and A. Görür, “Compact dual-mode microstrip quasi-meander loop resonator for filter applications,” in Proc. 38th Eur. Microwave Conf., 2008, pp. 630-633.
[11] A. Görür, C. Karpuz, and M. Akpinar, “A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 385-387, Sep. 2003.
[12] A. Görür and C. Karpuz, “Miniature dual-mode microstrip filters,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 37-39, Jan. 2007.
[13] X. D. Huang and C. H. Cheng, “A novel microstrip dual-mode bandpass filter with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 404-406, Jul. 2006.
[14] Y. W. Kong and S. T. Chew, “EBG-based dual mode resonator filter,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 124-126, Mar. 2004.
[15] A. Görür, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 10, pp. 386-388, Oct. 2002.
[16] Y. Z. Wang, C. A. Wang, and K. Y. Lin, “Miniaturized dual-mode quasi-elliptic function bandpass filter with wide rejection bandwidth,” in Proc. Asia- Pacific Microwave Conf., 2006, pp. 1569-1574.
[17] H. Wang and L. Zhu, “Microstrip dual-mode filters with miniaturized size and broadened stopband using meander-shaped stepped-impedance ring resonator,” IEICE Electron. Express, vol. 2, no. 5, pp. 159-164, Feb. 2005.
[18] J. T. Kuo and C. Y. Tsai, “Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1107-1112, Mar. 2006.
[19] Y. Z. Wang and M. L. Her, “Miniaturized dual-mode microstrip bandpass filters with wide upper stopband,” IET Microw. Antennas Propag., vol. 1, no. 4, pp. 904-910, Aug. 2007.
[20] T. Y. Yun and K. Chang, “Piezoelectric-transducer-controlled tunable microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1303-1310, May 2002.
[21] E. Fourn, A. Pothier, C. Champeaux, P. Tristant, A. Catherinot, P. Blondy, G. Tanné, E. Rius, C. Person, and F. Huret, “MEMS switchable interdigital coplanar filter,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 320-324, Jan. 2003.
[22] S. J. Park, K. Y. Lee, and G. M. Rebeiz, “Low-loss 5.15-5.70-GHz RF MEMS switchable filter for wireless LAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3931-3939, Nov. 2006.
[23] C. Lugo and J. Papapolymerou, “Dual-mode reconfigurable filter with asymmetrical transmission zeros and center frequency control,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 499-501, Sep. 2006.
[24] R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Compact 2-pole and 4-pole 2.4-2.8 GHz dual-mode tunable filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 1480-1483.
[25] H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis and W. J. Chappell, “High-Q fully reconfigurable tunable bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3525-3533, Nov. 2009.
[26] J. Y. Chen, H. J. Tsai, and N. W. Chen, “Bandwidth reconfigurable microwave bandpass filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2011.
[27] C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 573-577, Feb. 2003.
[28] C. Lugo and J. Papapolymerou, “Electronic switchable bandpass filter using PIN diodes for wireless low cost system-on-a-package applications,” IEE Proc.-Microw. Antennas Propag., vol. 151, no. 6, pp. 497-502, Dec. 2004.
[29] C. Lugo and J. Papapolymerou, “Single switch reconfigurable bandpass filter with variable bandwidth using a dual-mode triangular patch resonator,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 779-782.
[30] W. H. Tu, “Compact low-loss reconfigurable bandpass filter with switchable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 208-210, Apr. 2010.
[31] K. K. M. Cheng, “Design of dual-mode ring resonators with transmission zeros,” Electron. Lett., vol. 33, no. 16, pp. 1392-1393, Jul. 1997.
[32] W. H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2497-2502, Jun. 2006.
[33] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2012-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明