博碩士論文 985202022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.129.19.21
姓名 董其豐(Chi-Feng Tung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 車載網路中以移動性預測為基礎支援穩定連線之轉傳選擇機制
(Mobility Prediction-Based Relay Selection Scheme for Stable Connections in VANETs)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 車載網路(Vehicular Ad hoc networks)為近年來行動隨意網路(Mobile Ad Hoc Networks)的型態改良,其主要通訊分別利用車輛對車輛通訊與車輛對路邊設施 (Road Side Unit)通訊,建立起動態的網路拓撲。由於在車輛對車輛通訊的架構當中,車輛高速移動以及容易改變的網路拓撲環境,造成此架構的無線網路通訊產生不穩定的現象。為了解決此問題,許多研究分別提出不同的車載網路封包路由機制,想藉由挑選車輛節點密度較高的道路進行傳送,以提高封包傳送成功的機率。然而在決定路徑之後,其轉傳節點選擇通常沿襲MANETs中路由協定的做法,選擇距離目的地端最近的節點作為轉傳對象,亦或是考慮節點的電量與運算能力作為篩選的條件。然而,VANETs中,車輛節點移動範圍受限於道路的拓撲形狀或是各種不同的道路規範以及駕駛者行為,與傳統MANETs中節點隨意移動的型態大不相同。且由於車輛得以裝載能力較高的運算設施與供電來源,因此以供電量與運算能力做為考量並不適當。更重要的是,由於車輛移動速度過快,使得轉傳節點更容易離開發送端的傳輸範圍,也造成重複的進行路段建置行為浪費大量的網路頻寬。本論文提出以移動性預測為基礎支援穩定連線之轉傳選擇機制,結合道路拓撲形狀與車輛的移動性預測連線時間,使得封包路由能夠盡量保持和車輛移動方向相同,減少連線中斷次數。另外本論文考慮現實狀況全球定位系統存在誤差,進行線道正確位置修正,以提供更精確的車輛移動預測機制。本論文在最後呈現實驗結果,本機制相較於其他轉傳節點選擇演算法,能夠平均提升25.6%的連線時間,以及降低20.2%的斷線次數,並且將連線時間之預測準確度控制於5.09%的絕對百分比誤差中。證明在現實環境多線道的情況下,本節點選擇機制能夠提供更穩定的網路連線時間。
摘要(英) Vehicular ad hoc network (VANET) is a novel class of wireless network. Vehicles implemented with on board unit (OBU), which can communicate with each other by vehicle-to-vehicle (V2V) and vehicle to infrastructure (V2R) network architecture. In the V2V network environment, vehicular network topology is changing dynamically all the time with high mobility, the communications occurred in this architecture is intermittent pattern. To solve this problem, numerous researchers have proposed different kinds of VANET routing protocol to enhance the success of packets delivery ratio through choosing the path with high density. After determining the routing path, the choosing of relay nodes usually follow the mobile ad hoc networks (MANETs) routing protocol, that is, it selects the closest node with the destination or consider the power supply and computation ability of node. However, In MANET, mobile nodes are moving in a random and irregular pattern hence, it is very hard to predict their movements. Unlike unpredictable mobility in MANET, vehicles are limited by predefined road segments, traffic rules and driver behaviors. Furthermore, nowadays Vehicular on board units are able to equip a much more powerful vehicle rechargeable battery and a larger volume of communication device than before; therefore, it becomes inappropriate to take power supply volume and computing into account. Therefore, it is unsuitable to determine the relay node by these terms. What’s more important is that the vehicle moves too fast to make the relay node easily to leave the transmission range of sender, as a result, it wastes a lot of network bandwidth for route maintenance and re-discovery. In order to solve the above mentioned problems, this thesis proposed a mobility prediction-based relay selection scheme for stable connections in VANETs which takes both direction of vehicles and routing path into account. It makes packet routing and vehicles keep moving in the same direction, for reducing the link disconnection. This thesis takes GPS errors into consideration when determining the lane position to predict the vehicles mobility, for a even more accurate mobility prediction. Finally, the proposal is examined by the conducted simulation— the simulation results show that the proposed mechanism, on average, can increase connecting time by 25.6% but decrease number of link disconnection by 20.2%; furthermore, the prediction accuracy of connecting time is improved within the absolute error of 5.09%. This proves that in the multi-lanes scenarios, the proposed mechanism can provide even more stable connecting time than others.
關鍵字(中) ★ 轉傳選擇
★ 車載網路
★ 移動性預測
關鍵字(英) ★ VANET
★ Mobility Prediction
★ Relay Selection
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vii
第1章 緒論 1
1.1 概要 1
1.2 研究動機 2
1.3 研究目的 5
1.4 章節架構 6
第2章 背景知識與相關研究 7
2.1 車載網路 7
2.2 車載網路之路由機制 9
2.3 轉傳選擇之相關研究 11
2.4 結論與比較 16
2.5 相關技術 17
第3章 以移動型預測為基礎支援穩定連線之轉傳選擇機制 22
3.2 前提假設 23
3.3 以移動性預測為基礎支援穩定連線之轉傳選擇機制 24
3.4 車載網路之路由路徑選擇 32
3.5 多線道的都市環境轉傳節點選擇 35
3.6 全球定位系統之線道誤判修正 45
第4章 模擬實驗與結果 47
4.1 車輛移動模型 47
4.2 實驗環境設定 49
4.3 實驗結果 51
第5章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 78
參考文獻 81
參考文獻 [1] Intelligent Transportation Society of Taiwan, http://www.its-taiwan.org.tw/index2.htm
[2] International Telecommunication Union - ITU Radiocommunication Assembly approves new developments for its 3G standards, http://www.itu.int/newsroom/press_releases/2007/30.html
[3] IEEE 802.11 Official Timelines, http://www.ieee802.org/11/Reports/802.11_Timelines.htm
[4] “Dedicated Short Range Communication (DSRC),” http://www.leearmstrong.com/dsrc/dsrchomeset.htm
[5] J. Y. Yang, L. D. Chou, C. F. Tung, L. Y. Chiu, and K. H. Cheng, “Issues and Challenges of Vehicular Network Management Protocols,” Proceedings of 11th Cross-Strait Information Technology Conference, Chungli, Taiwan, R.O.C., pp. 55-60, Dec. 2009.
[6] J. Jeong, S. Guo, Y. Gu, T. He, and D .H. C. Du, “Trajectory-Based Data Forwarding for Light-Traffic Vehicular Ad Hoc Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, issue 5, pp. 743-757, 2011.
[7] J. Zhao, and G. Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1910-1922, 2008.
[8] L. D. Chou, J. Y. Yang, Y. C. Hsieh, D. C. Chang, and C. F. Tung, “Intersection-based routing protocol for VANETs,” Wireless Personal Communications. doi:10.1007/s11277-011-0257-z, 2011.
[9] D. Kumar, A. A. Kherani, and E. Altman, “Route Lifetime Based Optimal Hop Selection in VANETs on Highway: An Analytical Viewpoint,” Proceeding of Networking, pp.799-814, 2006.
[10] L. Coyle, J. Ye, E. Loureiro, S. Knox, S. Dobson, and P. Nixon, “A Proposed Approach to Evaluate the Accuracy of Tag-based Location Systems,” Proceedings of Ubiquitous Systems Evaluation Workshop (USE 07), Innsbruck, Austria, Sep. 2007.
[11] E. Schoch, F. kargl, M. Weber, and T. Leinmuller, “Communication Patterns in VANETs,” Proceedings of ACM International Conference on Mobile Ad Hoc Networking and Computing, Hong Kong, China, May, 2008.
[12] V. Navda, A. P. Subramanian, K. Dhanasekaran, A. T. Giel , S. Das, “MobiSteer: Using Beam Directional Antenna for Vehicular Network Access,” Proceedings of the 5th international conference on Mobile systems, applications and services, San Juan, Puerto Rico, Jun. 2007.
[13] C. Lochert, H. Hartenstein, J. Tian, H. Fusler, D. Hermann, and M. Mauve, "A Routing Strategy for Vehicular Ad Hoc Networks in City Environments,” Proceedings of IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, pp. 156–161, Jun, 2003.
[14] V. Naumov and T. Gross, "Connectivity-Aware Routing (car) inVehicular Ad Hoc Networks," Proceedings of IEEE International Conference on Computer Communications, Anchorage, AK, USA, pp. 1919–1927, May 2007.
[15] B. Karp, and H. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” Proceeding of IEEE International Conference on Mobile computing and Networking (MobiCom 2000), Boston, Massachusetts, Aug. 2000.
[16] Y. Toor, P. Mühlethaler, A. Laouiti, and A.D.L. Fortelle, “Vehicle Ad Hoc Networks: Applications and Related Technical Issues,” IEEE Communications Surveys and Tutorials, vol. 10, issue 3, pp.74-88, 2008.
[17] Q. Yang, A. Lim, S. Li, J. Fang, and P. Agrawal, “ACAR: Adaptive Connectivity Aware Routing for Vehicular Ad Hoc Networks in City Scenarios,” Mobile Networks and Applications, vol. 15, issue 1, Feb. 2010.
[18] H. Okada, A. Takano, and K. Mase, “A Proposal of Link Metric for Next-Hop Forwarding Methods in Vehicular Ad Hoc Networks,” Proceedings of 6-th IEEE Consumer Communications and Networking Conference, 2009 (CCNC 2009), Las Vegas, NV, pp.1-5, Jan. 2009.
[19] Y. S. Wu, D. H. Lee, and J. I. Jung, “Routing Algorithm Limiting Next Hop Selection Distance in Multi Hop Ad Hoc Network,” Proceedings of IEEE International Conference on Communication Workshops (ICC Workshops 2009), Dresden, pp. 1-4, Jun. 2009.
[20] P. Lai, X. Wang, N. lu, and F. Liu, “A Reliable Broadcast Routing Scheme Based on Mobility Prediction for VANET,” Proceeding of IEEE Intelligent Vehicles Symposium, pp. 1083-1087, 2009.
[21] H. Menouar, M. Lenardi, and F. Filali, “A Movement Prediction-based Routing Protocol for Vehicle-to-Vehicle Communications,” Proceedings of IEEE Vehicle-to-Vehicle Communications (V2VCOM 2005), San Diego, California, USA, pp. 1-8, Jul. 2005.
[22] T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, and N. Kato, Y. Nemoto, “A Stable Routing Protocol to Support ITS Services in VANET Networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp.3337-3347, 2007.
[23] A. Benslimane, S. Bargh, and C. Assi, “An efficient routing protocol for connecting vehicular networks to the Internet,” Pervasive and Mobile Computing, vol.7, issue 1, pp.98-113, 2011.
[24] J. Luo, X. Gu, T. Zhao, and W. Yan, “A Mobile Infrastructure Based VANET Routing Protocol in the Urban Environment,” Proceeding of International Conference on Communications and Communications and Mobile Computing (CMC) , pp. 432-437, 2010.
[25] B. Blaszczyszyn, A. Laouiti, P. Muhlethaler, and Y. Toor, “Opportunistic Broadcast in VANETs Using Active Signaling for Relaying Selection,” Proceeding of the 8th ITS Telecommunications (ITST 2008), pp. 384-389, 2008.
[26] A Guide To The Global Positioning System (GPS), http://support.radioshack.com/support_tutorials/gps/gps_main.htm
[27] W. Zhang, W. Zhu, and H. Zhang, “Simulation and Analysis of Galileo System,” Lecture Notes in Electrical Engineering, vol. 97, pp. 579-585, 2011
[28] H. Zhang, G. Shen, and D. Jin, “Research on Location Accuracy of UAV Based on DGPS/INS Technique,” Advanced Research on Industry, Information System and Material Engineering, vol. 204-210, pp.1525-1528, 2011.
[29] Assisted GPS: A Low-Infrastructure Approach, http://www.gpsworld.com/gps/assisted-gps-a-low-infrastructure-approach-734
[30] D. K. Hele and F. R. S, “Erasmus Darwin's Improved Design for Steering Carriages--And Cars,” Notes and Records of the Royal Society, vol. 56, no. 1, pp.41-62, 2002.
[31] G. H. Mohimani, F. Ashtiani, A. Javanmard, and M. Hamdi, “Mobility Modeling, Spatial Traffic Distribution, and Probability of Connectivity for Sparse and Dense Vehicular Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 4, pp.1998-2007, 2009.
[32] F. Tate, and S. Turner, “Road geometry and drivers' speed choice,” Road and Transport Research, vol. 16, issue 4, pp.53-64, 2007.
[33] H. Saleet, O. Basir, R. Langar, amd R. Boutaba, “Region-Based Location-Service-Management Protocol for VANETs,” IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp.917-931, 2010.
[34] N. Wisitpongphan, B. Fan, P. Mudalige and O. K. Tonguz, “On the Routing Problem in Disconnected Vehicular Ad Hoc Networks,” Proceedings of IEEE International Conference on Computer Communications (INFOCOM 2007), Anchorage, Alaska, USA, May 2007.
[35] J. M. Utts, and R.F. Heckard, Statistical Ideas and Methods, Cengage Learning, Jan. 26, 2005.
[36] R. N. Bracewell. Fourier transform and its application, McGraw-Hill College, Jun. 1, 1999.
[37] M. N.a Murty, and V. S. Devi, “Bayes Classifier,” Undergraduate Topics in Computer Science, vol. 0, pp. 86-102, 2011.
[38] E. K. Lee, S. Yang, S. Y. Oh, and M. Gerla, “RF-GPS: RFID Assisted Localization in VANET,” Proceedings of IEEE 6th Mobile Adhoc and Sensor Systems International conference (MASS 09), pp. 621-626, Oct. 2009.
[39] NCTUns 6.0 Network Simulator and Emulator, http://nsl.csie.nctu.edu.tw/nctuns.html
[40] S. Y. Wang, C. L. Chou, “NCTUns Tool for Wireless Vehicular Communication Network Researches,” Simulation Modelling Practice and Theory, pp. 1211–1226, 2009.
[41] J. Harri, F.Filali, and C. Bonnet, “Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy,” Technical Report RR-06-168, Institut Eurecom, Jan. 2007.
[42] Z. B. Liao, C. J. Chuan, and J. Lei, “Analysis on Measuring Errors of Fixed Target Based on Location of Vehicular GPS,” Fire Control & Command Control, vol. 29, no.1, pp.83-86, 2004.
[43] Google map, http://maps.google.com/
[44] 國立成功大學-行車事故鑑定研究中心, “車輛操控性,” http://faculty.stut.edu.tw/~ccchang/yesnewtraffic/C/B/H.pdf
指導教授 周立德(Li-Der Chou) 審核日期 2011-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明