博碩士論文 985202048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.204.191.31
姓名 吳宗憲(Tsung-Hsien Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測
(Gaussian Mixture Models with Skin and Shadow Probabilities for Moving Skin Region Detection)
相關論文
★ 以單一攝影機實現單指虛擬鍵盤之功能★ 基於視覺的手寫軌跡注音符號組合辨識系統
★ 利用動態貝氏網路在空照影像中進行車輛偵測★ 以視訊為基礎之手寫簽名認證
★ 影像中賦予信任等級的群眾切割★ 航空監控影像之區域切割與分類
★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計★ 影像特徵點匹配應用於景點影像檢索
★ 自動感興趣區域切割及遠距交通影像中的軌跡分析★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測
★ Analysis of the Performance of Different Classifiers for Cloud Detection Application★ 全天空影像之雲追蹤與太陽遮蔽預測
★ 在全天空影像中使用紋理特徵之雲分類★ 市區監控影像之十字路口感興趣區域自動偵測與車流估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 膚色偵測在影像應用中扮演一個非常重要的角色,它的應用相當廣。單純的膚色偵測會先設定閥值,當色彩區域落在閥值之內才會被判斷為膚色,但若背景有著接近膚色的物體或牆壁則會造成誤判,此外,光線昏暗或變化強烈的地方,如果單純根據閥值判斷,膚色很容易受到光線影響造成判斷錯誤;同樣地,陰影偵測也有類似的情形,因此我們利用膚色及陰影特徵分別計算出膚色與陰影機率,然後結合 高斯混合模型的學習機制,來解決此問題。
本篇論文提出一種利用膚色與陰影機率結合高斯混合模型來偵測移動膚色區域的方法,稱之為膚色與陰影機率高斯混合模型。本系統分為兩大部分,首先利用膚色機率結合高斯混合模型偵測移動的膚色區域,接著再使用陰影機率高斯混合模型去除手或其他移動物體在背景上造成的陰影,藉以得到所要的移動膚色區域。其中的陰影機率高斯混合模型是以高斯陰影混合模型為基礎改良而來,由於高斯陰影混合模型需先判斷像素是否為陰影來決定要不要建入模型中,但由於陰影範圍難以界定,因此我們提出將單純的陰影判斷改為計算出陰影機率,然後結合高斯混合模型來建立陰影模型,並利用此模型來偵測陰影區域。
我們在實驗中分別測詴膚色偵測及陰影偵測結果,而經實驗證明膚色高斯混合模型可有效偵測移動膚色區域,並且不會偵測到接近於膚色的背景及移動的非膚色物體,而高斯陰影機率混合模型雖不能提升陰影偵測率,但可降低陰影偵測的誤判率。
摘要(英) Skin detection plays an important role in a wide range of image processing applications. Common skin detection methods need to set skin color cluster decision boundaries in different color space components. When the pixel values fall within these decision boundaries, they would be defined as skin pixels. However, this method may not work well in the scenes with complex and time-varying illumination. Common property-based shadow detection methods have the same problem. To overcome these shortcomings, a composite improved approach to detect moving skin regions is presented in this thesis.
This thesis proposes Gaussian mixture models with skin and shadow probabilities (GMM-SS) to detect moving skin regions. The system is separated into two parts. The first part of GMM-SS uses Gaussian mixture models with skin probability to detect moving skin regions. The learning rate in GMM-SS is lower for pixels with higher skin robabilities. The moving skin regions would be constructed into background Gaussian more slowly by the lower learning rate, and vice versa. The second part of GMM-SS uses Gaussian mixture models with shadow probability to remove casting shadows to get pure moving skin region.
The shadow Model is used to identify distributions of pixel values that could represent shadowed surfaces. In this model, it modifies shadow distribution learning rate with each pixel’s shadow probability and makes it more flexible for shadow detection.
The experiment results show that our system is more efficient and robust for moving skin region detection and removing shadow regions. We compare it with common skin detection and Gaussian mixture models. It keeps steady skin detection rates and low false alarm rates in most situations than common skin and shadow detection methods.
關鍵字(中) ★ 膚色偵測
★ 陰影偵測
★ 高斯混合模型
關鍵字(英) ★ detection
★ shadow
★ skin detection
★ GMSM
★ GMM
論文目次 ABSTRACT .......................................................................................................... I
摘要 ...................................................................................................................... II
第一章 緒論 ......................................................................................................... 1
1.1 研究動機 ................................................................................................... 1
1.2 相關研究 ................................................................................................... 2
1.3 系統架構 ................................................................................................... 3
第二章 相關研究方法介紹 ................................................................................. 5
2.1 膚色偵測 ................................................................................................... 5
2.2 陰影性質 ................................................................................................... 9
2.3 高斯混合模型 ........................................................................................... 9
2.4 高斯陰影混合模型 ................................................................................. 12
第三章 膚色與陰影機率高斯混合模型 ........................................................... 20
3.1 膚色機率高斯混合模型 ......................................................................... 20
3.2 陰影機率高斯混合模型 ......................................................................... 27
第四章 實驗結果與討論 ................................................................................... 33
4.1 實驗環境 ................................................................................................. 33
4.2 膚色及陰影機率分析 ............................................................................. 35
4.3 實驗結果 ................................................................................................. 47
4.4 實驗結果討論 ......................................................................................... 61
第五章 結論與未來工作 ................................................................................... 68
參考文獻 ............................................................................................................. 69
參考文獻 69
參考文獻
[1] S. H. Kim and N. K. Kim, “Object oriented face detection using range and color
information,” Proc. Third International Conf. on Automatic Face and Gesture
Recognition, pp. 76-81, 1998.
[2] J. C. Terrillon and M. David, “Automatic detection of human faces in natural scene
images by use of a skin color model and of invariant moments,” Proc. Third
International Conf. on Automatic Face and Gesture Recognition, pp. 112-117, 1998.
[3] Q. B. Sun and W. M. Huang, “Face detection based on color and local symmetry
information,” Proc. Third International Conf. on Automatic Face and Gesture
Recognition, pp. 130-135, 1998.
[4] M. Yamada and K. Ebihara, “A new robust real-time method for extracting human
silhouettes from color images,” Proc. Third International Conf. on Automatic Face and
Gesture Recognition, pp. 528-533, 1998.
[5] M.J. Jones and J.M. Rehg, “Statistical color models with application to skin detection,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 274-280, 1999.
[6] J. Yang and W. Lu, “Skin-color modeling and adaptation,” Proc. the ACCV98, pp.
687-694, 1998.
[7] M. Storring and H.J. Andersen, “Physics-based modelling of human skin colour under
mixed illuminants,” Robotics and Autonomous Systems, vlo. 3, pp.131-142, 2001.
[8] P. Kakumanu and S. Makrogiannis, “A survey of skin-color modeling and detection
methods,” Pattern Recognition, vol. 3, pp. 1106-1122, 2007.
[9] D. Chai and K.N. Ngan, “Face segmentation using skin-color map in videophone
applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 4,
pp. 551-564, 1999.
[10] Y. Wang and B. Yuan, “A novel approach for human face detection from color images
under complex background, “ Pattern Recognition, vol. 10, pp. 1983-1992, 2001.
[11] Y. Dai and Y. Nakano, “Face-texture model based on SGLD and its application in face
detection in a color scene,“ Pattern Recognition, vol. 29, pp. 1007-1017, 1996.
70
[12] M. J. Seow and D. Valaparla, “Neural network based skin color model for face detection,”
Proc. 32nd Workshop on Applied Imagery Pattern Recognition, pp. 141-145, 2003.
[13] S.L. Phung and D. Chai, “A universal and robust human skin color model using neural
networks,” Proc. IJCNN01, pp. 2844-2849, 2001.
[14] D. Chai and A. Bouzerdoum, “A bayesian approach to skin color classification in YCbCr
color space,” IEEE TENCON’2000, vol. 2, pp. 421-424, Sept. 2000.
[15] Q.H. Thu and M. Meguro, “Skin-color extraction in images with complex background
and varying illumination,” Sixth IEEE Workshop on Applications of Computer Vision,
2002.
[16] R. Cucchiara and C.Grana, ”Improving shadow suppression in moving object detection
with HSV color information,” Proc. IEEE International Conf. Intelligent Transportation
Systems, 2001.
[17] D.A. Reynolds, “Speaker identification and verification using Gaussian mixture speaker
models”, Speech Communication, vol. 17, pp. 91-108, 1995
[18] C. Stauffer and W.E.L. Grimson, “Adaptive background mixture models for real-time
tracking,” Proc. Computer Vision and Pattern Recognition 1999 (CVPR '99), June 1999.
[19] N. Martel-Brisson and A. Zaccarin, “Learning and removing cast shadows through a
multidistribution approach”, IEEE Trans. Pattern Aanlysis and Machine Intelligence, vol.
29, no. 7, .pp.1133-1146, July 2007.
[20] T. Horprasert and D. Hardwood, “A statistical approach for real-time robust background
subtraction and shadow detection,” Proc. International Conf. Computer Vision
FRAME-RATE Workshop, 1999.
[21] J. Yang and A. Waibel, “A real-time tracker,” Proc. Third Workshop Applications of
Computer Vision, pp. 142-147,1996.
指導教授 鄭旭詠(Hsu-Yung Cheng) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明