博碩士論文 985202106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.224.0.25
姓名 宋育寰(Yu-Huan Sung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用位元率失真之群聚現象與多階層分類機制實現H.264/AVC之快速模式選擇
(Fast Mode Decision for H.264/AVC Using Rate-Distortion Clustering and Multi-Phase Classification)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 基於 ARM 架構上的 ORB-SLAM2 的應用與改進
★ 基於深度學習之指數股票型基金趨勢預測★ 探討財經新聞與金融趨勢的相關性
★ 基於卷積神經網路的情緒語音分析★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 視訊編碼的應用相當廣泛,從電視傳播、視訊會議、監控系統、影片拍攝、影片串流到手持裝置的應用,都有舉足輕重的地位。目前新制定的H.264/AVC編碼標準,採用了更多樣化的編碼技術,以提高壓縮的效率與畫質。在比MPEG-2 提供更佳的編碼效能背後,所付出的是為編碼器帶來相當大的運算量,而使H.264/AVC無法輕易地實現在即時編碼的應用環境。因此,如何有效降低編碼的運算量,並維持應有的壓縮品質,是相當重要且熱門的研究主題。本論文提出了使用最近中心法,配合多階層式分類的機制,快速篩選出最適合的編碼區塊大小,不但有效降低了編碼所需的運算時間,更保持了相當優越的壓縮品質。根據實驗,本論文所提出的方法可節省約68% 的編碼時間,卻能維持與原本非常接近的壓縮品質。
摘要(英) Video coding plays an indispensible role in a wide variety of applications such as TV-broadcast, video conference, monitoring system, filming, video streaming and mobile service. The latest video coding standard, H.264/AVC, adopts several new coding techniques to improve the compression ratio and visual quality. In spite of the better coding efficiency comparing to MPEG-2, H.264/AVC suffers from the extremely high computational burdens in the encoding process induced by those new coding features. Therefore, how to reduce the encoding complexity while keeping nearly the same coding performance is a vital and challenging task. In this paper, a very efficient fast mode decision algorithm using nearest mean method and multi-phase classification scheme is proposed, which reduces encoding time greatly without any noticeable performance degradation.
關鍵字(中) ★ 視訊壓縮
★ 模式選擇
★ H.264/AVC
★ 視訊編碼
關鍵字(英) ★ H.264/AVC
★ Video Coding
★ Video Compression
★ Mode Decision
論文目次 INTRODUCTION ............................................................................................... 1
1-1 MOTIVATIONS ............................................................................................................ 1
1-1.1 Importance of Video Technology ........................................................................... 1
1-1.2 Needs for Real-Time Video Applications .............................................................. 2
1-2 KEY NOTES OF CHAPTERS ......................................................................................... 2
CHAPTER 1 FUNDAMENTALS OF VIDEO CODING ............................... 4
1-1 HISTORY OF VIDEO CODING...................................................................................... 4
1-1.1 Draft of Standard .................................................................................................... 4
1-1.2 Progress of Video Coding ...................................................................................... 5
1-2 VIDEO COMPRESSION ................................................................................................ 6
1-2.1 Progressive and Interlacing Displays ..................................................................... 6
1-2.2 Block Based Coding ............................................................................................... 7
1-2.3 Perceptual Redundancy and Discrete Cosine Transform ....................................... 7
1-2.4 Temporal Redundancy and Motion Estimation .................................................... 12
1-2.5 Spatial Redundancy And Interpolation ................................................................ 15
1-2.6 Motion Compensation .......................................................................................... 17
1-2.7 Types of Frame ..................................................................................................... 18
1-2.8 Slice of Frame ....................................................................................................... 20
1-2.9 Blocking Artifacts ................................................................................................ 21
1-3 TYPICAL CODING PROCESS ..................................................................................... 21
1-3.1 Encoding ............................................................................................................... 21
1-3.2 Decoding ............................................................................................................... 23
1-4 H.264/AVC STANDARD ........................................................................................... 23
1-4.1 Overview .............................................................................................................. 23
1-4.2 Variable Block-Size .............................................................................................. 24
1-4.3 Multiple References .............................................................................................. 25
1-4.4 Quarter-Pel Motion Estimation ............................................................................ 26
1-4.5 Directional Intra Prediction .................................................................................. 27
1-4.6 Motion Compensation of Multiple Directions ..................................................... 28
1-4.7 Mode of Block ...................................................................................................... 28
1-4.8 DCT-Like 4x4 Integer Transform ........................................................................ 30
CHAPTER 2 RELATED WORKS AND LITERATURES REVIEW ........ 33
2-1 OVERVIEW ................................................................................................................ 33
2-2 SKIP-MODE DETECTION ........................................................................................ 33
- iii -
2-2.1 Threshold Method ................................................................................................ 34
2-2.2 Probabilistic Modeling ......................................................................................... 35
2-3 INTER/INTRA DETERMINATION ............................................................................... 36
2-4 MODE PREDICTION .................................................................................................. 36
2-4.1 Mode Correlation .................................................................................................. 36
2-4.2 Phase Correlation .................................................................................................. 37
2-4.3 Other Prediction Methods ..................................................................................... 37
2-5 MODE CLASSIFICATION ........................................................................................... 37
2-5.1 Pixel Domain Analysis ......................................................................................... 38
2-5.2 DCT Coefficients Analysis ................................................................................... 38
2-5.3 Motion Vector Analysis ....................................................................................... 38
2-5.4 Machine Learning ................................................................................................. 39
2-5.5 Fuzzy Classifier .................................................................................................... 40
CHAPTER 3 PROPOSED FAST MODE DECISION ............................... 41
3-1 INTRODUCTION ........................................................................................................ 41
3-2 FEATURE SELECTION ............................................................................................... 42
3-3 CLASSIFIERS ............................................................................................................. 44
3-3.1 Nearest Mean Method .......................................................................................... 46
3-3.2 1-Norm Distance .................................................................................................. 46
3-4 MULTI-PHASE CLASSIFICATION .............................................................................. 47
3-4.1 Flow of Classification ........................................................................................... 48
3-5 DYNAMICALLY ADJUSTMENT .................................................................................. 49
3-5.1 Curve-Fitting for Moving Means ......................................................................... 51
3-5.2 Adjustments of Means and Variances .................................................................. 52
3-6 PERFORMANCE CONTROL ....................................................................................... 53
3-6.1 Early Termination ................................................................................................. 53
3-6.2 Error Propagation and Performance Control ........................................................ 54
3-6.3 Slack Coefficients ................................................................................................. 55
3-7 OVERALL FAST MODE DECISION ALGORITHM ...................................................... 55
CHAPTER 4 EXPERIMENTAL RESULTS ................................................. 58
4-1 ENVIRONMENT OF EXPERIMENTS ........................................................................... 58
4-1.1 Training of Category Means ................................................................................. 58
4-1.2 Testing Conditions ................................................................................................ 59
4-2 PERFORMANCE EVALUATIONS ................................................................................ 59
CHAPTER 5 CONCLUSION AND REMARKS .......................................... 63
REFERENCES .................................................................................................. 64
參考文獻 [1] ITU-T Rec. H.264/ISO/IEC 14496-10 AVC. Joint Video Team (JVT) of ISO MPEG and ITU-T VCEG, JVT-G050, 2003.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard, " IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560 - 576, 2003.
[3] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-Complexity transform and quantization in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 598–603, July 2003
[4] D. Marpe, H. Schwarz, and T. Wiegand, “Context-adaptive binary arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 620–636, July 2003
[5] C. S. Tseng, H. M. Wang, and J. F. Yang, “Enhanced intra-4x4 mode decision for H.264/AVC coders,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 8, pp. 1027–1032, Aug. 2006.
[6] J. C. Wang, J. F. Wang, J. F. Yang, and J. T. Chen, “A fast mode decision algorithm and its VLSI design for H.264/AVC intra-prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10, pp.1414–1422, Oct. 2007.
[7] A. C. Tsai, A. Paul, J. C. Wang, and J. F. Wang, “Intensity Graditent Technique for Efficient Intra-Prediction in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 5, pp. 694–698, May 2008.
[8] Y. H. Huang, T. S. Ou, H. Chen, “Fast decision of block size, prediction mode, and intra block for H.264 intra prediction,” IEEE Trans. Circuits. Syst. Video Technol., vol. 20 no. 8, pp. 1122–1132, Aug 2010.
[9] M. Paul, M. R. Frater, and J. F. Arnold, “An efficient mode selection prior to the actual encoding for H.264/AVC encoder,” IEEE Trans. Multimedia, vol. 11, no. 4, pp. 581–588, Jun. 2009.
[10] L. Yang, K. Yu, J. Li, and S. Li, “An effective variable block-size early termination algorithm for H.264 video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 6, pp. 784–788, Jun. 2005.
[11] M. G. Sarwer, and Q.M. Jonathan Wu “Adaptive Variable Block-Size Early motion estimation termination algorithm for H.264/AVC Video Coding Standard.” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, pp. 1196-1201, Aug 2009.
[12] C. Kannangara et al., “Low-complexity skip prediction for H.264 through Lagrangian cost estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 2, pp. 202–208, Feb. 2006.
- 65 -
[13] Y.-C. Lin, T. Fink, and E. Beller, “Fast mode decision for H.264 based on rate-distortion cost estimation,” in Proc. ICASSP2007, Honolulu, Hawaii, pp. 1137–1140, Apr. 15-30 2007.
[14] Y. Zhao, M. Bystrom, and I. E. G. Richardson, “A MAP framework for efficient skip/code mode decision in H.264,” in Proc. ICIP2006, Atlanta, GA, Oct. 8–11, 2006.
[15] I. Choi, J. Lee, and B. Jeon, “Fast coding mode selection with rate-distortion optimization for MPEG-4 part-10 AVC/H.264,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 12, pp. 1557–1561, Dec. 2006.
[16] C. Kim and C. C. Jay Kuo, “Feature-based intra-/inter coding mode selection for H.264/AVC,” IEEE Trans. Circuits and Syst. Video Technol., vol. 17, no. 4, pp. 441–453, Apr. 2007.
[17] B. G. Kim, “Novel inter-mode decision algorithm based on macroblock (MB) tracking for the P-slice in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 2, pp. 273–279, Feb. 2008.
[18] Y. H. Kim and B. G. Kim, “Fast block mode decision algorithm in H.264/AVC video coding,” Journal of Visual Communication and Image Representation, vol.19, no. 3, pp.175-183, Apr. 2008.
[19] S. H. Ri, Y. Vatis, and J. Ostermann, “Fast inter-mode decision in an H.264/AVC encoder using mode and lagrangian cost correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 302–306, Feb. 2009.
[20] M. Paul, W. Lin, C. T. Lau, and B. Lee, “Direct inter-mode selection for H.264 video coding using phase correlation,” IEEE Trans. Image Processing, vol. 20, no. 2, pp. 461 - 473, Feb. 2011.
[21] J. R. Ding, “Class-based Search Algorithm for Inter Mode Prediction of H.264/AVC,” IWWSIP2009, Chalkida, Greece, pp. 1137–1140, 18 - 20 Jun. 2009.
[22] B. Zhan, B. Hou, and R. Sotudeh, "Fast mode selection to reduce the encoding complexity of H.264/AVC," ISCAS2008, Seattle, WA, USA, pp. 3570-3573, 18 – 20 May 2008.
[23] W. P. Ma, S. Y. Yang, L. Gao, and C. K. Pei, "An Efficient Fast Mode Decision Algorithm Based on Motion Cost for H.264 Inter Prediction," IITAW2008, New York, New York, USA, pp. 550-553, Jun. 28 – Jul. 3, 2009.
[24] D. Wu, F. Pan, K. P. Lim, and S. Wu et al., “Fast intermode decision in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol.,vol.15,no.7,pp. 953–958, Jul. 2005.
[25] Y. Huang, Q. Liu, and T. Ikenaga, “Macroblock feature and motion involved multi-stage fast inter mode decision algorithm in h.264/avc video coding,” IEICE Trans. Fundamentals, pp. 1041–1044, Nov. 2009.
[26] S. Su, Q. Liu, and Y. Su, “An inter block mode decision method based on gradient and
- 66 -
RDO,” ISECS2009, Sanya, China, pp. 23–25, 8-9 Aug. 2009.
[27] S. H. Chen, H. M. Chen and M. C. Shie, et al., “Adaptive fast block mode decision algorithm for H.264/AVC,” ICIEA2010, Taichung, Taiwan, pp. 2002–2007, Jun. 2010.
[28] H. Wang, S. Kwong, and C.-W. Kok, “An efficient mode decision algorithm for H.264/AVC encoding optimization,” IEEE Trans. Multimedia, vol. 9, no. 4, pp. 882–888, Jun. 2007.
[29] Y. M. Lee and Y. Lin, “Zero-block Mode Decision Algorithm for H.264/AVC,” IEEE Trans. Image Processing, vol. 18, no. 3, pp. 524-533, Mar. 2009.
[30] A. C. W. Yu, G. R. Martin, and H. Park, “Fast inter-mode selection in the H.264/AVC standard using a hierarchical decision process,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 2, pp. 186–195, Feb. 2008.
[31] G. Lu, L. Chen, "Fast mode decision for H.264 base on DC coefficient," ICIT2010, Las Vegas, Nevada, USA, pp. 382-386, Apr. 2010.
[32] T.-Y. Kuo and C.-H. Chan, “Fast variable block size motion estimation for H.264 using likelihood and correlation of motion field,” IEEE Trans. Circuit Syst. Video Technol., vol. 16, no. 10, pp. 1185–95, Oct. 2006.
[33] L. Shen, Z. Liu, Z. Zhang, and X. Shi, “Fast inter mode decision using spatial property of motion field,” IEEE Trans. Multimedia, vol. 10, no. 10, pp. 1208–1214, Oct. 2008
[34] H. Zeng, C. Cai, and K.-K. Ma, “Fast mode decision for H.264/AVC based on macroblock motion activity,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 4, pp. 491–499, Apr. 2009
[35] Z. Liu, L. Shen, and Z. Zhang, “An efficient intermode decision algorithm based on motion homogeneity for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 1, pp. 128–132, Jan. 2009.
[36] T. Zhao, H. Wang, S. Kwong, C.-C. Jay Kuo, “Fast mode decision based on mode adaptation,” IEEE Trans. Circuits and Syst. Video Technol., vol. 20, no. 5, pp. 697–705, May. 2010.
[37] W. Geng and W. Lenan, “Low complexity mode decision for H.264 based on macroblock motion classification,” ISISE2009, Shanghai, China, pp. 227–230, 26-28 Dec. 2009.
[38] M. Yang and W. Wang, “Fast macroblock mode selection based on motion content classification in H.264/AVC,” in Proc. IEEE Int. Conf. Image Process., vol. 2, pp. 24–27, Oct. 2004.
[39] C. H. Lampert, “Machine learning for video compression: macroblock mode decision,” ICPR2006, Hong Kong, China, vol. 1, pp. 936–940, Aug. 2006.
[40] P. Carrillo, “ Low complexity H.264 video encoder design using machine learning techniques,” MS Thesis, Department of Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA, Nov. 2008.
- 67 -
[41] W. Ma, S. Yang and L. Gao et al., “ Fast mode selection scheme for h.264/AVC inter prediction based on statistical learning method,” ICME2009, New York, New York, USA, pp. 17-20 ,Jun. 28-Jul. 3 2008.
[42] A. Jagmohan and K. Ratakonda, “Time-efficient learning theoretic algorithms for h.264 mode selection,” ICIP2004, Singapore, vol. 2 pp. 749–752, Oct. 2004.
[43] Y. Vatis, L. Lu, and A. Jagmohan, “Inter mode selection for H.264/AVC using time-efficient learning-theoretic algorithms.” ICIP2009, Cairo, Egypt, pp. 3413-3416, Nov. 2009.
[44] J. Kim, M. Kim, S. Hahm, I. Cho, C. Park, “Block-mode classification using SVMs for early termination of block mode decision in H.264|MPEG-4 Part 10 AVC,” ICAPR2009, Kolkata, Feb. 2009.
[45] M. Yang and B. Bourbakis, “H.264/AVC intra-only coding (iAVC) and neural network based fast prediction mode decision,” ICTAI2010, Arrass, France, pp. 57-60, Oct. 2010.
[46] P. J. Lee, H. K. Chang, S. H. Huang, W. J. Wang, “Coding mode determination by using fuzzy logic in H.264 motion estimation,” NAFIPS2009, Cincinnati, Ohio, USA, Jun. 2009.
[47] Voronoi diagram from Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Voronoi_diagram.
[48] G. Bjontegaard, "Calculation of Average PSNR Differences Between RD Curves," Doc. VCEG-M33, Apr. 2011.
[49] H.264/AVC Reference Software JM17.0, [Online]. Available: http://iphome.hhi.de/suehring/tml/download/old_jm/jm17.0.zip.
[50] S. Haykin, Neural Networks and Learning Machines. Englewood Cliffs, NJ: Prentice-Hall, 2009.
[51] J. Kennedy and R. Eberhart, “Particle swarm optimization.” Proc. IEEE International Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, 1995.
指導教授 王家慶(Jia-Ching Wang) 審核日期 2011-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明