博碩士論文 985203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.119.26
姓名 賴顯灝(Hsien-Hao Lai)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 長程演進通訊系統上支援機器對機器傳輸服務之 分離競爭機制
(Separated Contention scheme for SupportingMachine-to-Machine (M2M) Transportation Service overLTE Communication System )
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網際網路的快速發展與通訊技術的逐步成熟,自網路擷取資訊已成為當今最重要的服務元素與生活型態,大多數人已日漸習慣無所不在的寬頻存取,各種相關的應用也不斷推陳出新。多元的網路服務需要更大的傳輸頻寬與更便利的傳輸方式,如何解決網路瓶頸與壅塞問題,正是行動通訊技術不斷探討與改善的主要議題之一。
目前行動無線通訊產業服務已從 H2H (Human to Human) 延伸到 M2M (Machine to Machine),電信業者普遍認為 M2M 有潛力成為全球數位行動通訊成長最快的領域,無線行動通訊標準組織 (如IEEE, 3GPP) 皆已投入 M2M 標準制定。第四代行動通訊網路 (4G) 的高頻寬與低延遲特性,非常適合各種即時傳輸服務的應用,如多媒體資訊服務、安全監控、遠距醫療及智慧型電力網路等。
M2M未來的應用場景有下列幾項特性:廣泛的市場應用、小量資料傳輸、低成本、低功耗以及大量的終端設備建置。M2M 裝置將對現有行動通訊系統的頻寬與資源造成影響,如何滿足大量的終端裝置連線需求並同時減低對原有H2H 裝置電話與數據服務品質的衝擊,將是未來重要的解決方向。若進行大量 M2M 設備的佈署,現有之 H2H 上行競爭機制勢必將無法負荷 M2M 需求。本論文提出兩種分離式競爭機制,經由結合現有機制之優點,不只增進 M2M 設備競爭成功機率也同時避免M2M 設備對 H2H 設備造成碰撞問題。
摘要(英) As the development of network technology matures, getting information from network becomes the most important service in our daily life. With the increasing of related applications, most people are getting used to the omnipresent network day by day. How to resolve the bottleneck and the congestion problems of radio network with limited resource is one of the major issues in the next generation mobile networks.
Services of mobile communication have been extended from H2H (Human to Human) to M2M (Machine to Machine). The operators generally consider that M2M has the potential of being the fastest booming market in the worldwide digital communication network. The major mobile communication standard institutes (such as IEEE, 3GPP) are also involved in establishing standards of M2M communication system. The characteristics of broad bandwidth and low latency in the fourth generation mobile network (4G) are proper to be used in various real-time transmission services such as multimedia information service, security, remote health care, intelligent power network, and so on.
There are several unique characteristics in M2M applications, such as extensive application market, small data size, low cost, low power consumption and a huge amount of terminal equipments. All M2M devices may influence the usage of radio resources of the existing mobile communication systems. How to fulfill the access requirements of the huge amount of terminal equipments and reduce the impact of QoS of existing H2H devices will be the most important issue. Moreover, due to the deployment of M2M devices, the existing uplink contention scheme for the H2H devices could not handle the amount of traffic requests issued from M2M devices in a short term period. This thesis proposes two separated contention schemes, which take the advantages of the existing contention schemes, to solve the mentioned issue. The proposed schemes not only increase the access probability of M2M devices but also avoid the congestion problem on H2H devices because of M2M devices.
關鍵字(中) ★ 競爭機制
★ 機器對機器 (M2M)
★ 長程演進技術 (LTE)
★ OPNET 模擬器
關鍵字(英) ★ Long Term Evolution (LTE)
★ Contention scheme
★ Machine-to-Machine (M2M)
★ OPNET Simulator
論文目次 中文摘要 ............................................................................................................................ iv
Abstract ............................................................................................................................... v
目錄 .................................................................................................................................. vii
Figure List........................................................................................................................... x
Table List ............................................................................................................................ xi
1. INTRODUCTION ..................................................................................................... 1
1.1. Background ...................................................................................................... 1
1.1.1. Long Term Evolution .......................................................................... 1
1.1.1.1. System architecture...................................................................... 1
1.1.1.2. Multiple Access schemes............................................................. 5
1.1.1.3. Frame structure ............................................................................ 6
1.1.2. Machine to Machine ............................................................................ 7
1.2. Problem Description ........................................................................................ 9
1.3. Goal of Thesis ................................................................................................ 10
1.4. Thesis Organization ....................................................................................... 11
2. RELATED WORKS................................................................................................ 12
2.1. M2M .............................................................................................................. 12
2.1.1. Communication model ...................................................................... 12
2.1.2. System architecture............................................................................ 14
2.1.3. Use cases............................................................................................ 14
2.1.3.1. Metering..................................................................................... 14
2.1.3.2. Road Security ............................................................................ 14
some smart applications for ticketing, intelligent traffic management, congestion avoidance and fleet management. ............................................... 15
2.1.3.3. Consumer Electronic and Devices ............................................. 15
2.1.4. MTC applications .............................................................................. 16
2.2. Random Access ............................................................................................. 16
2.2.1. Cell search and selection ................................................................... 16
2.2.2. System information reception ............................................................ 17
2.2.3. Random Access procedure ................................................................ 17
2.2.3.1. Random Access Preamble ......................................................... 18
2.2.3.2. Random Access Response (RAR) ............................................. 18
2.2.3.3. RRC Connection Request .......................................................... 19
2.2.3.4. Contention Resolution ............................................................... 19
2.2.4. Frame structure of PRACH ............................................................... 20
3. CONTENTION SCHEME ...................................................................................... 21
3.1. Envisioned RAN Improvements for M2M Devices ...................................... 22
3.1.1. Access Class Barring schemes .......................................................... 22
3.1.2. Separate RACH resources for MTC .................................................. 22
3.1.3. Dynamic allocation of RACH resources ........................................... 22
3.1.4. MTC specific backoff scheme ........................................................... 22
3.1.5. Slotted Access.................................................................................... 23
3.1.6. Pull based scheme .............................................................................. 23
3.2. Scheduling Based Scheme ............................................................................. 23
3.3. Event-triggered Based Scheme ...................................................................... 26
4. SIMULATION MODEL AND SIMULATION RESULTS ................................... 33
4.1. Simulator ....................................................................................................... 33
4.2. Traffic Models ............................................................................................... 35
4.2.1. Beta distribution ................................................................................ 35
4.3. Simulator Methodology ................................................................................. 36
4.3.1. Protocol level simulator methodology ............................................... 36
ix
4.3.2. Impact on/from H2H device traffic ................................................... 36
4.4. Simulation Assumption ................................................................................. 37
4.4.1. Simulation parameters for RACH capacity evaluation ..................... 37
4.4.2. RACH opportunity ............................................................................ 38
4.4.3. Handling of collision ......................................................................... 38
4.4.4. Output for analysis............................................................................. 38
4.5. Simulation Results ......................................................................................... 39
4.5.1. Simulation result of Scheduling-based scheme ................................. 40
4.5.1.1. RACH capacity of M2M devices .............................................. 40
4.5.2. Simulation Result of Event-triggered based scheme ......................... 43
4.5.2.1. RACH capacity of M2M Devices ............................................. 44
4.5.2.2. Impact to H2H Devices ............................................................. 49
5. CONCLUSIONS ..................................................................................................... 50
Annex A: Abbreviations .................................................................................................... 52
REFERENCES .................................................................................................................. 53
參考文獻 [1] 3GPP TS 25.913 V9.0.0, "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)," Dec. 2009.
[2] 3GPP TS 36.300 V10.4.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” Jun. 2011.
[3] Agilent Technologies, “SC-FDMA-the new LTE uplink explained”, Moray Rumney, 2008.
[4] 3GPP TR 37.868 V0.7.0, "Study on RAN Improvements for Machine-type Communications,” Oct. 2010.
[5] ETSI TS 102 689 V1.1.1, “Machine-to-Machine communications (M2M); M2M service requirements,” Aug. 2010.
[6] 3GPP TS 22.368 V11.2.0, “Technical Specification Group Services and System Aspects; Service requirements for Machine-Type Communications (MTC)”, Jun. 2011.
[7] 3GPP TR 22.868 V8.0.0, “Technical Specification Group Services and System Aspects; Study on Facilitating Machine to Machine Communication in 3GPP Systems,” Mar. 2007.
[8] 3GPP TR 23.888 V1.3.0, “Technical Specification Group Services and System Aspects; System Improvements for Machine-Type Communications,” Jun. 2011.
[9] 3GPP TR 33.812 V9.2.0, “Technical Specification Group Services and System Aspects; Feasibility study on the security aspects of remote provisioning and change of subscription for Machine to Machine (M2M) equipment,” Jun. 2010.
[10] 3GPP TS 36.213 V10.2.0, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures,” Jun. 2011.
[11] Stefania Sesia, Issam Toufik, Matthew Baker, “LTE–the UMTS long term evolution from theory to practice,” Apr. 2009.
[12] 3GPP RAN2 70bis R2-104663, “LTE: MTC LTE simulations,” ZTE, May. 2010.
[13] 3GPP TS 36.321 V10.2.0, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification,” Jun. 2011.
[14] R2-100597, “Kickoff for Machine Type Communications Study Item”, Jan. 2010.
[15] R2-101249, "Scope of RAN's optimization for MTC," Feb. 2010.
[16] R2-102749, “Report of 3GPP TSG RAN WG2 meeting #69bis,” Apr. 2010.
[17] R2-102296, “RACH Intensity of Time Controlled Devices,” Apr. 2010.
[18] R2-102297, “RAN Mechanisms to Distribute RACH Intensity,” Apr. 2010.
[19] R2-103141, “Load Analysis for Fleet Management Application,” May 2010.
[20] R2-103269, “Modifications to RACH Intensity of Smart Meters in TR 37.868,” May 2010.
[21] R2-103973, "RACH collision probability analysis," Jul. 2010.
[22] R2-103742, “Evaluation of Rach congestion solutions,” Jul. 2010.
[23] R2-103776, "Separate backoff scheme for MTC," Jul. 2010.
[24] R2-103907, “Solutions for RACH overload,” Jul. 2010.
[25] R2-105223,” Report of 3GPP TSG RAN WG2 meeting #70bis,” Jul. 2010.
指導教授 許獻聰(Shiann-tsong Sheu) 審核日期 2011-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明