博碩士論文 985203046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.157.58
姓名 謝秉融(Ping-jung Hsieh)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 協調IEEE 802.11p車載無線網路及IEEE 802.16e無線寬頻都會網路之異質網路排程方法
(Heterogeneous Network Scheduling Scheme for Coordinating IEEE 802.11p Wireless Vehicular Network and IEEE 802.16e Wireless Metropolitan Area Network)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 智慧型運輸系統(Intelligent Transportation System,ITS)利用車載環境無線存取(Wireless Access in Vehicular Environments,WAVE)技術在車對道路系統(Vehicle-to-roadside,V2R) 及車對車(Vehicle-to-vehicle,V2V)的通訊環境下提供即時交通資訊及網路存取服務,而此架構被制定為IEEE 802.11p規格。IEEE 802.16e網路是一個集中式管理控制的系統,主要是為了提供無線寬頻都會網路(Wireless Metropolitan Area Network,WMAN)的服務,且它能使WAVE網路達到最佳化效能。當車載單元(On Broad Unit,OBU)同時擁有IEEE 802.11p及IEEE 802.16e的無線收發器,透過IEEE 802.16e集中式排程的方式可以有效克服IEEE 802.11p的缺點,此集中式排成分為競爭方式的媒體存取控制以及在ad hoc環境下V2R和V2V如何路由的通訊協定。我們提出了一個新穎的方法,名為異質網路排程方法(Heterogeneous Network Scheduling Scheme,HNSS),藉由IEEE 802.16e集中式的管理機制使得不同網路的車載單元可以免競爭地存取其服務頻道且讓它們有較低成本的路由至網際網路存取資源。數值分析及模擬結果都證明我們提出的異質網路排程方法可以增進原本標準的效能。
摘要(英) The wireless access in vehicular environment (WAVE) architecture of intelligent transportation system (ITS) has been standardized in the IEEE 802.11p specification and it is going to be widely deployed in vehicle to roadside (V2R) and vehicle to vehicle (V2V) communication environments in order to provide prompt emergency information and internet services. However, due to the WAVE network employs the IEEE 802.11 contention-based protocol, the obvious drawback of WAVE network is the low channel efficiency. The IEEE 802.16e network, which has been designed as a centralized control system to provide the mobile services in a wireless metropolitan area network (WMAN), is a potential candidate for optimizing the efficiency of WAVE network. As on-board-units (OBUs) equip with IEEE 802.11p and IEEE 802.16e transceivers, the drawbacks of IEEE 802.11p contention-based medium access control protocol and ad-hoc routing protocol for V2R and V2V operations can be resolved by using IEEE 802.16e centralized scheduling scheme. As a solution, we propose an efficient scheme, namely heterogeneous network scheduling scheme (HNSS), which not only allows the OBUs to access service channels in a contention-free manner but also provides OBUs low cost routes to get internet access via IEEE 802.16e centralized scheduler. Numerical and simulation results demonstrate that the proposed HNSS can significantly improve the standard transmission efficiency.
關鍵字(中) ★ 頻道存取
★ 異質網路
★ IEEE 802.11p
★ IEEE 802.16e
★ WAVE
★ WiMAX
關鍵字(英) ★ channel access
★ heterogeneous
★ IEEE 802.16e
★ IEEE 802.11p
★ WAVE
★ WiMAX
論文目次 摘 要........I
Abstract........II
Contents........IV
List of Figures........V
List of Tables........VI
1. Introduction........1
2. Heterogeneous Network Scheduling Scheme........6
2.1. System Architecture of HNSS........6
2.2. Schedules of HNSS........9
3. Performance Analysis........17
A. WiMAX Throughput........17
B. WAVE Throughput........19
4. Numerical and Simulation Results........22
5. Conclusions........31
References........32
參考文獻 [1] ASTME 2213-03, “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems-5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ASTM International, Jul. 2003.
[2] IEEE P802.11p/D11.0, “Draft Amendment for Wireless Access in Vehicular Environments (WAVE),” IEEE 802.11 Working Group of the IEEE 802 Committee, Mar. 2010.
[3] IEEE Std. 1609.3-2010, “IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services,” IEEE std. 802.11, Dec. 2010.
[4] IEEE P1609.4 D9.0, “Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation,” Intelligent Transportation Systems Committee, Sept. 2010.
[5] IEEE Std. 802.11a-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band,” IEEE std. 802.11, Sept. 1999.
[6] IEEE Std. 802.11-2007, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” IEEE std. 802.11, Jun. 2007.
[7] IEEE Std. 802.11e-2005, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,” IEEE std. 802.11, Sept. 2005.
[8] IEEE Std. 802.16e-2005, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” IEEE std. 802.16, Feb. 2006.
[9] G. Tan and J. Guttag, “Time-based fairness improves performance in multi-rate WLANs,” Proceedings of the USENIX Annual Technical Conference on USENIX Annual Technical Conference, pp. 23-23, 2004.
[10] H. Park and C. kwon Kim, “Performance Analysis of Multi-Rate IEEE 802.11 WLANs with Channel Error,” Proceedings of the International Conference on Advanced Communication Technology, vol. 3, pp. 1479-1481, Feb. 2007.
[11] Q. Chen, D. Jiang and L. Delgrossi, “IEEE 1609.4 DSRC Multi-channel Operations and its Implications on Vehicle Safety Communications,” Proceedings of the IEEE Vehicular Networking Conference, pp. 1-8, Oct. 2009.
[12] S. Wang, C. Chou, K. Liu., T. Ho, W. Hung, C. Huang, M. Hsu, H. Chen and C. Lin, “Improving the Channel Utilization of IEEE 802.11p/1609 Networks,” Proceedings of the Wireless Communications and Networking Conference, pp. 1-6, Apr. 2009.
[13] W. Klepczynski, “GPS for Precise Time and Time Interval Measurement,” in Global Positioning System: Theory and Applications, vol. 2, pp. 483-500, 1996.
[14] IEEE Instrumentation and Measurement Society, “IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” IEEE std 1588, 2002.
[15] IEEE Instrumentation and Measurement Society, “IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” IEEE std. 1588, 2008.
[16] D. Mills, “Network Time Protocol (Version 3) Specification, Implementation and Analysis,” Network Working Group Request for Comments RFC-1305, Mar. 1992.
[17] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,” Communications of the ACM, vol. 16, no. 9, Sept. 1973.
[18] Q. Ni, L. Hu, A. Vinel, Y. Xiao and M. Hadjinicolaou, “Performance Analysis of Contention Based Bandwidth Request Mechanisms in WiMAX Networks,” IEEE Systems Journal, vol. 4, no. 4, Dec. 2010.
[19] Y. Tseng, S. Ni, and E. Shih, “Adaptive Approaches to Relieving Broadcast Storms in a Wireless Multihop Mobile Ad Hoc Network,” IEEE Transactions on Computers, vol. 52, pp. 545-557, May 2003.
[20] M. Laddomada, F. Mesiti, M. Mondin, and F. Daneshgaran, “On the Throughput Performance of Multirate IEEE 802.11 Networks with Variable-Loaded Stations: Analysis, Modeling, and a Novel Proportional Fairness Criterion,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1594-1607, May 2010.
指導教授 許獻聰(Shiann-tsong Sheu) 審核日期 2011-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明