以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:44 、訪客IP:18.226.88.70
姓名 謝佩恩(Pei-en Hsieh) 查詢紙本館藏 畢業系所 通訊工程學系 論文名稱 以電腦搜尋之短非同調區塊碼
(Short Noncoherent Block Codes Searched by Computers)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 幾種非同調區塊編碼架構,包括使用八點相位鍵移(8PSK)、八點扭轉振幅相位鍵移(8TAPSK)、十六點扭轉振幅相位鍵移(16TAPSK)及十六點的正交振幅調變(16QAM)非同調區塊編碼都已經被提出。但是這些區塊編碼架構在短的區塊無法得到令人滿意的錯誤效能,主要原因為這些有架構的碼在短的區塊所得到的最小非同調距離太小。本篇論文根據非同調距離去搜尋短的非同調區塊碼,由於短區
塊碼的碼字個數不會太多,在非同調接收端可以將碼字一個一個測試,所以我們考慮沒有結構的碼,使用幾種演算法尋找一群碼字來組成碼,讓它具有大的最小非同調距離,並經由最佳的位元對應來得到較低的位元錯誤率,模擬結果亦顯示這種沒有架構的區塊碼有較好的錯誤效能。
本篇論文藉由參考查表法相差編碼,我們使用另外一種建立相差編碼表的方式來解決多個點數不易建成群組數較少的相差編碼表的問題。本篇論文對於三十二點的正交振幅調變(32QAM)建立出16 個群組數的相差編碼表,它與相差編碼十六點的正交振幅調變(16QAM)的表具有相同群組數。藉由本研究提出的方法產生16 群組的三十二點的正交振幅調變(32QAM)相差編碼表,與相差編碼十六點的正交振幅調變(16QAM)比較,可得到較大的最小非同調距離及較好的錯誤效能。
摘要(英) Many noncoherent block coding schemes were proposed, such as using noncoherent block-coded 8PSK(NBC-8PSK), noncoherent block-coded Twisted amplitude and phase shift keying using eight signal point(NBC-8TAPSK), NBC-16TAPSK, and noncoherent block-coded quadrature amplitude
modulation(16QAM). When the block length is very small, these schemes perform worse due to their small minimum noncoherent distance. In this thesis, we use computers to search short noncoherent block codes according to the noncoherent distance. Because the number of codeword is less, the noncoherent receiver can test the codeword one-by-one. The unstructured codes were composed from the
codewords by several algorithms and their minimum noncoherent distance was longer. Additionally, we got the lower bit error rate by the optimum bit mapping. The results showed that the unstructured block code perform better.
In this study, based on differential encoding by a look-up table, the varied differential encoding table was developed and solved that multiple points difficultly
produce differential encoding table with less group. In this study, we constructed the differential encoding table for 32QAM and the table included sixteen groups. The
number of groups is the same with the number of differential encoding table for 16QAM. The results showed that the differential encoder for 32QAM has larger minimum noncoherent distance and better error performance than the differential encoder for 16QAM.
關鍵字(中) ★ 非同調區塊碼 關鍵字(英) ★ noncoherent block codes 論文目次 論文摘要................................................. I
Abstract ................................................II
誌謝.....................................................IV
目錄......................................................V
圖表目錄.................................................VI
第一章 緒論.............................................. 1
1.1 介紹................................................. 1
1.2 研究動機............................................. 2
第二章回顧............................................... 3
2.1 通道模型及非同調接收器................................3
2.2 非同調區塊編碼之回顧................................. 5
第三章以電腦搜尋之短非同調區塊碼........................ 11
3.1 碼搜尋演算法及其結果................................ 11
3.1.1 演算法............................................ 11
3.1.2 搜尋之結果........................................ 15
3.2 不限定星座圖之碼設計方法............................ 40
3.3 最佳位元對應(bit mapping)演算法 .................... 43
3.2.1 人工位元對應之方法................................ 43
3.2.2 以電腦實行位元對應演算法.......................... 45
3.4 模擬結果............................................ 46
第四章相差編碼.......................................... 52
4.1 區塊碼使用16PSK 星座圖搭配相差編碼 ................. 52
4.1.1 相差編碼方式...................................... 52
4.2 相差編碼查表法...................................... 54
4.3 使用補碼字演算法建構相差編碼表...................... 55
4.3.1 16APSK 與16TAPSK 相差編碼表 ...................... 55
4.3.2 32QAM 建立16 個群組相差編碼 ...................... 59
第五章結論.............................................. 62
參考文獻................................................ 63
參考文獻 [1] R. Knopp and H. Leib, “M-ary coding for the noncoherent AWGN channel,”IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[2] R. Y. Wei, “Nocoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp.978-986, June 2005.
[3] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,”IEEE Trans. Commun., vol. 56, no. 10, pp. 1616-1625, Oct. 2008.
[4] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp.
1361-1391, July 1999.
[5] R. Y. Wei, S. S. Gu, and T. C. Sue, “Noncoherent block-coded TAPSK, ” IEEE Trans. Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
[6] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes, ” IEEE Trans. Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
[7] R. Y. Wei, “Differential encoding by a look-up table for quadrature amplitude modulation,” IEEE Trans. Commun., vol. 59, pp. 84-94, Jan. 2011.
[8] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371-376, May 1977.
[9] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[10] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
[11] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp.
1361-1391, July 1999.
[12] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan. 1982.
[13] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[14] M. L. McCloud, M. Brehler, and M. K. Varanasi, “Signal design and convolutional coding for noncoherent space-time communication on the block-Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1186-1194, May 2002.
[15] K. Zeger and A. Gersho, “Pseudo-fray coding,” IEEE Trans. Commun., vol. 38, pp 2147-2158, Dec. 1990.
[16] Y. Li and X. G. Xia, “Constellation mapping for space-time matrix modulation with iterative demodulation/decoding,”IEEE Trans. Commun., vol. 53, pp 764-768,
Nov. 2005.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2011-7-11 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare