博碩士論文 985203057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.147.205.57
姓名 邱俊翔(Chun-hsiang Chiu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 長期演進系統上用於排程式機器通訊之持續性自適應競爭演算法
(Self-Adaptive Persistent Contention Scheme for Scheduling Based Machine-Type Communications in 3GPP LTE System)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步,無線通訊網路的技術不斷推陳出新,以滿足現代人對於無線通訊的不同需求。然而,在無線通訊技術不斷演進的同時,因應不同的無線網路環境可能存在著不同的架構與規範,如何在新舊無線通訊網路技術之間取得一個平衡或取捨,將是一大問題。為此,基於不破壞原有技術的前提下進行技術的提升,應是較為人們所期待的方式。
  近年來,機器對機器(Machine to Machine;M2M)無線通訊網路已逐漸萌芽,其特性在於毋須人為操作或透過有限的人機互動情況下,使不同裝置之間能相互溝通且進行資料交換。隨著未來市場對於M2M無線通訊網路的渴望,現有的無線通訊網路業者,莫不爭先恐後導入M2M的觀念,以求此創新的服務概念能夠帶來廣大的利益。
  在現有無線通訊網路系統的架構下,所制定的通訊規範都是基於人對人(Human to Human;H2H)的行為與需求進行設計;除此之外,在未同步之無線裝置欲上傳資料至基地台之前,彼此之間必須先透過一隨機存取的機制競爭上行傳輸的頻寬,以獲取上行傳輸的機會。然而,基於M2M的潛在數量非常龐大,以及每個設備皆有小量資料傳輸需求的特性,欲將M2M的觀念導入現有無線通訊網路系統的架構中,仍有許多技術性的議題與系統衝擊亟待克服。
  在現有的第三代合作夥伴計劃(3rd Generation Partnership Project;3GPP)之長期演進技術(Long Term Evolution;LTE)系統的架構下,一使用者設備(User Equipment;UE)欲上傳資料至一基地台(evolved Node B;eNB)至少必須透過下列步驟:(1)UE自64個前置碼(Preamble)中擇一向eNB提出上行傳輸請求;(2)eNB因應該前置碼回應一相關訊息至UE;(3)UE因應該相關訊息向eNB提出上行頻寬請求;以及(4) eNB進行排程處理,允許UE上傳資料。
  在現有LTE系統的架構下,64個前置碼是由各個UE所共享,一旦多個UE選擇到相同的前置碼,將會於競爭過程中發生碰撞,而在碰撞發生後,UE必須自行退讓一段時間,才能重新向eNB提出上行傳輸請求。不幸地,當整合M2M無線裝置至現有的H2H無線通訊網路中,大數量的M2M無線裝置將與現有的H2H無線裝置共享64個前置碼,以致於整合後的無線通訊網路,無論是M2M無線裝置或是H2H無線裝置都極易於上行傳輸資料時發生碰撞。
  有鑑於此,如何在不破壞現有無線通訊網路架構的前提下,有效改善M2M無線裝置與H2H無線裝置極易於上行傳輸資料時發生碰撞之問題,確為亟需解決之問題。本論文著眼於此,針對固定週期上行回報資料之M2M設備設計一具自我調整之持續性排程競爭方式,除了解決該類型M2M設備對H2H設備造成的衝擊外,更在不破壞原有系統架構的前提下將M2M設備的競爭行為與所使用的上行頻寬最佳化,以期達到最有效率的下一代通訊系統運作方式。
摘要(英) With the advance of science and technology, various wireless communication network technologies have been developed in succession to satisfy different demands of the modern people. However, making a balance or compromise between new and old wireless communication network technologies becomes a serious problem because different wireless network technologies may correspond to different frameworks and specifications. For this purpose, improving wireless communication network technologies without violating the existing technologies shall be a desirable way.
  Machine to Machine (M2M) wireless communication networks, which allow different devices to communicate and exchange data with each other without the need of (or with the need of only a limited amount of) human to machine interactions, have been developed in recent years. In order to accomplish the modern M2M wireless communication networks, most of wireless communication network service providers promote the concept of M2M to gain extensive benefits from such innovative services.
  Wireless communication networks, which are established according to the conventional wireless communication network frameworks, are all designed on the basis of human to human (H2H) behaviors and demands. Besides, when wireless devices have not synchronized with the communication system, they must contend with each other through a random access mechanism to gain an opportunity for uplink transmission. However, the M2M communications are different to contemporary mobile network communication services as it involves a very large number of communication terminals with little traffic requirement, many technical issues and system impacts have to be tackled in order to realize the M2M communications on existing wireless communication networks.
  Under the framework of the Long Term Evolution (LTE) system of the 3rd Generation Partnership Project (3GPP), a user equipment (UE) and the serving evolved Node B (eNB) must perform at least the following steps when it desires to upload data to the serving eNB: (1) the UE selects one of sixty-four preambles for transmitting an uplink transmission request to the eNB; (2) the eNB replies a relevant message to the UE in response to the preamble; (3) the UE transmits an uplink bandwidth request to the eNB in response to the relevant message; and (4) the eNB makes a schedule to allow the UE to upload data.
  Under the framework of the LTE system of 3GPP, the sixty-four preambles are shared by individual UEs, and once one of the preambles is chosen by multiple UEs, it would cause a collision. When such a collision occurs, the UEs must wait for a backoff time before they can transmit an uplink transmission request to the eNB again. Unfortunately, when M2M wireless devices are integrated into an existing H2H wireless communication network, all M2M wireless devices will share the sixty-four preambles with the existing H2H wireless devices. Consequently, the integrated wireless communication network would suffer from a serious blocking rate of uplink data transmissions from either the M2M wireless devices or the H2H wireless devices.
  According to previous discussions, it is an urgent requirement to overcome the collision problem effectively without violating the existing wireless communication network framework. This thesis focuses on the serious collision problem and proposes a self-adaptive persistent contention scheme for scheduling based M2M devices which report data in a periodical manner. In order to make the most effective way to operate the next generation communication system, the proposed scheme not only solves the congestion impact on the legacy devices but also optimizes the uplink bandwidth utilization and contention of M2M devices without violating the existing wireless communication network framework.
關鍵字(中) ★ 機器對機器 (M2M)
★ 競爭機制
★ 長程演進技術 (LTE)
★ OPNET 模擬器
關鍵字(英) ★ OPNET Simulator
★ Machine-to-Machine (M2M)
★ Contention Scheme
★ Long Term Evolution (LTE)
論文目次 中文摘要 .............................................................................. iv
Abstract .............................................................................. vi
誌謝 .................................................................................. ix
CONTENTS ............................................................................... x
LIST OF FIGURES ..................................................................... xiii
LIST OF TABLES ....................................................................... xiv
1. INTRODUCTION ....................................................................... 1
1.1. Preface .......................................................................... 1
1.2. Problem Description .............................................................. 2
1.3. Goal of This Thesis .............................................................. 5
1.4. Thesis Organization .............................................................. 6
2. RELATED WORKS ...................................................................... 7
2.1. Long Term Evolution .............................................................. 7
2.1.1. System Architecture ............................................................ 7
2.1.2. Frame Structure ............................................................... 10
2.1.3. Random Access ................................................................. 11
2.1.3.1. PLMN and Cell Selection ..................................................... 12
2.1.3.2. System Information Acquisition .............................................. 12
2.1.3.3. Random Access Procedure ..................................................... 13
2.1.3.3.1. Random Access Preamble .................................................... 13
2.1.3.3.2. Random Access Response .................................................... 14
2.1.3.3.3. RRC Connection Request .................................................... 16
2.1.3.3.4. Contention Resolution ..................................................... 16
2.1.3.4. Frame Structure of PRACH .................................................... 17
2.2. Machine to Machine .............................................................. 17
2.2.1. Communication Model ........................................................... 19
2.2.2. System Architecture ........................................................... 21
2.2.3. Use Cases ..................................................................... 23
2.2.3.1. Metering .................................................................... 23
2.2.3.2. Road Security ............................................................... 23
2.2.3.3. Consumer Electronic and Devices ............................................. 23
2.2.4. MTC Applications .............................................................. 24
3. ENVISIONED MTC RAN IMPROVEMENTS ................................................... 25
3.1. Access Class Barring Schemes .................................................... 26
3.1.1. UE individual Access Class Barring Scaling .................................... 26
3.1.2. Extended Access Barring ....................................................... 26
3.2. Separate RACH Resources for MTC ................................................. 27
3.3. Dynamic Allocation of RACH Resources ............................................ 27
3.4. MTC Specific Backoff Scheme ..................................................... 27
3.5. Slotted Access .................................................................. 27
3.6. Pull Based Scheme ............................................................... 28
3.7. Self-adaptive Persistent Scheduling Contention Scheme ........................... 28
3.7.1. Phase 1: Contention ........................................................... 30
3.7.2. Phase 2: Compact .............................................................. 32
4. SIMULATION MODELS AND SIMULATION RESULTS .......................................... 38
4.1. Simulation Model ................................................................ 38
4.2. Traffic Model ................................................................... 39
4.2.1. Beta Distribution ............................................................. 39
4.3. Simulator Methodology ........................................................... 40
4.3.1. Protocol Level Simulator Methodology .......................................... 40
4.3.2. Impact on/from H2H Device Traffic ............................................. 40
4.4. Simulation Assumption ........................................................... 40
4.4.1. Simulation Parameters for RACH Capacity Evaluation ............................ 40
4.4.2. RACH Opportunity .............................................................. 41
4.4.3. Handling of Collision ......................................................... 41
4.4.4. Analysis of Simulation Results ................................................ 42
4.5. Simulation Results .............................................................. 43
4.5.1. Comparisons of Simulation Results under Different Scenarios ................... 43
4.5.2. Simulation Results of Self-adaptive Persistent Scheme: Phase 1 ................ 44
4.5.2.1. RACH Capacity of MTC Devices ................................................ 44
4.5.3. Simulation Results of Self-adaptive Persistent Scheme: Phase 2 ................ 47
4.5.3.1. RACH Capacity of MTC Devices ................................................ 47
5. CONCLUSIONS ....................................................................... 49
6. FUTURE WORKS ...................................................................... 50
6.1. Numerical Analysis .............................................................. 50
6.2. The New Comer Resume Issue ...................................................... 50
REFERENCES ............................................................................ 51
APPENDIX A: ABBREVIATIONS ............................................................. 55
參考文獻 [1] 3GPP TS 25.913 V9.0.0, "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)," Dec. 2009.
[2] 3GPP TS 36.300 V11.0.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description, Stage 2,” Dec. 2011.
[3] 3GPP TS 36.101 V10.4.0, “User Equipment (UE) radio transmission and reception,” Sep. 2011.
[4] 3GPP TS 25.331 V10.5.0, “Radio Resource Control (RRC) protocol specification,” Sep. 2011.
[5] 3GPP TR 37.868 V11.0.0, "Study on RAN Improvements for Machine-type Communications,” Sep. 2011.
[6] Draft ETSI TS 102 689 V0.4.1 (2009-mm), Machine-to-Machine communications (M2M); M2M service requirements.
[7] 3GPP TS 22.368 V11.3.0, “Service requirements for Machine-Type Communications (MTC); Stage 1,” Sep. 2011.
[8] 3GPP TR 22.868 V8.0.0, “Study on Facilitating Machine to Machine Communication in 3GPP Systems,” Mar. 2007.
[9] 3GPP TR 23.888 V1.6.0, “System Improvements for Machine-Type Communications,” Nov. 2011.
[10] 3GPP TR 33.812 V9.2.0, “Feasibility study on the security aspects of remote provisioning and change of subscription for Machine to Machine (M2M) equipment,” Jun. 2010.
[11] 3GPP TS 36.213 V10.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” Sep. 2011.
[12] 3GPP TS 36.321 V10.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification,” Jun. 2011.
[13] 3GPP TS 36.211 V10.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation,” Sep. 2011.
[14] 3GPP TS 36.331 V10.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification,” Sep. 2011.
[15] Stefania Sesia, Issam Toufik and Matthew Baker, LTE - the UMTS Long Term Evolution: From Theory to Practice, John Wiley & Sons Ltd., United Kingdom, 2009.
[16] 3GPP RAN2 70bis, R2-104663, “LTE: MTC LTE simulations,” ZTE, May. 2010.
[17] 3GPP RAN2 68bis, R2-100597, “Kickoff for Machine Type Communications Study Item,” Huawei, CMCC, China Unicom, CATR, Jan. 2010.
[18] 3GPP RAN2 69, R2-101249, “Scope of RAN’’s optimization for MTC,” CMCC, CATR, CATT, Huawei, ZTE, Feb. 2010.
[19] 3GPP RAN2 70, R2-102749, “Report of 3GPP TSG RAN WG2 meeting #69bis, Beijing, China, April 12 - 16, 2010,” ETSI MCC, Apr. 2010.
[20] 3GPP RAN2 69bis, R2-102296, “RACH Intensity of Time Controlled Devices,” Vodafone, Apr. 2010.
[21] 3GPP RAN2 69bis, R2-102297, “RAN Mechanisms to Distribute RACH Intensity,” Vodafone, Apr. 2010.
[22] 3GPP RAN2 70, R2-103141, “Load Analysis for Fleet Management Application,” CMCC, May 2010.
[23] 3GPP RAN2 70, R2-103269, “Modifications to RACH Intensity of Smart Meters in TR 37.868,” Institute for Information Industry (III), CHTTL, Coiler Corporation, May 2010.
[24] 3GPP RAN2 70bis, R2-103973, “RACH collision probability analysis,” Huawei, Jul. 2010.
[25] 3GPP RAN2 70bis, R2-103742, “RACH overload solutions,” ZTE, Jul. 2010.
[26] 3GPP RAN2 70bis, R2-103776, “Separate backoff scheme for MTC,” ETRI, Jul. 2010.
[27] 3GPP RAN2 70bis, R2-103907, “Solutions for RACH overload,” Ericsson, ST-Ericsson, Jul. 2010.
[28] 3GPP RAN2 71, R2-105223, “Report of 3GPP TSG RAN WG2 meeting #70bis, Stockholm, Sweden, June 28 - July 2, 2010” ETSI MCC, Aug. 2010.
[29] 3GPP RAN2 73bis, R2-113650, “Report of 3GPP TSG RAN WG2 meeting #73bis, Shanghai, China, April 11 - 15, 2011” ETSI MCC, Apr. 2011
[30] Shao-Yu Lien, Kwang-Cheng Chen, Yonghua Lin, “Toward ubiquitous massive accesses in 3GPP machine-to-machine communications,” Communications Magazine, IEEE, Volume 49, Issue 4, pp. 66-74, Apr. 2011.
[31] Yu Chen, Wei Wang, “Machine-to-Machine communication in LTE-A,” Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1-4, Sep. 2010
[32] Susitaival, R., Wiemann, H., Ostergaard, J., Larmo, A., “Internet access performance in LTE TDD,” Vehicular Technology Conference (VTC 2010-Spring), pp. 1-5, May 2010.
[33] Bianchi, G., “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, pp. 535-547, Mar. 2000.
[34] Vinel, A., Ying Zhang, Qiang Ni, Lyakhov, A., “Efficient Request Mechanism Usage in IEEE 802.16,” Global Telecommunications Conference, pp. 1-5, Nov. 2006.
[35] Hyun Lee, Eunkyung Kim, Sungkyung Kim, Sungcheol Chang, Chulsik Yoon, Kyoung-Rok Cho, “Performance analysis of random access in IEEE 802.16m system,” Information and Communication Technology Convergence (ICTC), pp. 185-190, Nov. 2010.
[36] Hsien-Hao Lai, “Separated Contention scheme for Supporting Machine-to-Machine (M2M) Transportation Service over LTE Communication System,” National Central University, Master’s Thesis, Jun. 2010
指導教授 許獻聰(Shiann-tsong Sheu) 審核日期 2012-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明