博碩士論文 985205002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.236.222.124
姓名 劉伊哲(Yi-Che Liu)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 基於加速度及方位感測器之智慧型手機動態動作識別機制
(Biometric dynamic motion authentication using accelerometer and orientation sensor on smart phone)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 以元件式概念為基礎設計建立的XBRL示範性平台
★ 利用指定功能軌跡的滑鼠特徵分析以提升識別率★ 應用方位感測器之手機使用者識別機制
★ 以組合專精型多分類器於財務危機預測之研究★ 結合領域知識與機器運算之新的特徵選取方法: 應用於財務危機預警預測之問題
★ 一種新的非侵入式識別機制使用駕駛者的上半身骨架角度:基於動態及直方圖方法★ 基因演算法運用於特徵挑選解決財務危機預測問題
★ 基於方位感測器與觸控螢幕之智慧型手機非侵入式多模組識別機制★ 非侵入式多模組之手機使用者識別機制 :基於動態方法
★ 多分類器組合應用於財務危機預測★ 漸進式模型應用於財務危機預測問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,智慧型手機的便攜性、便利性使得智慧型手機成為普及的行動裝置,隨著智慧型手機功能導向的發展,被廣泛應用於通話、交易、付費以及身分認證,若遭盜用損失難以估計。上述許多功能需使用者做動態動作將手機與機器或與人溝通,這類應用程式目前僅能夠在使用前透過密碼驗證方式識別,若使用前皆需登入驗證則使用者很可能會為了方便使用而紀錄密碼,導致登入驗證形同虛設。因此本論文目的是要利用智慧型手機內建之Accelerometer及Orientation sensor達到非侵入式(non-intrusive)識別使用者動態動作的行為,以提高智慧型手機的安全等級。本論文用手機最常用之通話行為驗證動態動作是否可作為識別使用者,實驗結果同等錯誤率(Equal Error Rate)為15.4%,未達到低於12.8%目標值,認為動態動作之行為作為識別機制仍需加強其安全性。
摘要(英) In recent years, the smart phones have the portable and convenient ability. They become the most popular mobile devices. The functionality of smart phone development has been enhanced more than before. It has been used for communication, transaction, bill payment, and ID identification. If someone illegally uses your smart phone will make you suffer heavy losses. Most of all the above mentioned functionalities are needed to dynamic motion the smart phone communicate with machine or people. The application in current situation is just only using password authentication. If every application needs this authentication method will make user save password avoid inconvenience, so that authentication becomes useless. So the purpose of this paper use the smart phone’s embedded both accelerometer sensor and orientation sensor, achieve the non-intrusive dynamic motion authentication, and enhance smart phone security level. We use the most common communication behavior one of dynamic motion, if it can be used to verify user himself or not. The equal error rate (EER) of experimental result is under 15.4% not reach the goal, EER below 12.8%. The dynamic motion authentication needs to enhance the security level.
關鍵字(中) ★ 方位感測器
★ 加速度計
★ 非侵入式
★ 身分識別
關鍵字(英) ★ Authentication
★ non-intrusive
★ Accelerometer
★ Orientation
論文目次 中文摘要............................................................ i
Abstract........................................................... ii
誌謝.............................................................. iii
目錄............................................................... iv
圖目錄............................................................. vi
表目錄........................................................... viii
第一章 序論...................................................... 1
1-1 前言...................................................... 1
1-2 研究動機.................................................. 2
1-3 研究目的.................................................. 4
1-4 論文架構.................................................. 5
第二章 文獻探討.................................................. 6
第三章 實驗設計.................................................. 9
3-1 資料收集.................................................. 9
3-1-1 資料收集環境........................................ 9
3-1-2 資料收集情境....................................... 10
3-2 計算行為特徵............................................. 11
3-3 資料前置處理............................................. 13
3-4 軌跡資料分析識別......................................... 13
3-4-1 抽樣(sampling)..................................... 14
3-4-2 單類分類器(one-class classifier)................... 16
3-4-3 模型訓練與測詴..................................... 18
第四章 實驗結果與分析........................................... 19
4-1 實驗結果................................................. 19
4-2 實驗數據分析............................................. 21
4-3 討論:移動路徑特徵....................................... 24
第五章 研究討論與未來展望....................................... 27
5-1 結論..................................................... 27
5-2 未來展望................................................. 27
參考文獻........................................................... 29
附錄一 特徵計算公式............................................. 31
附錄二 各threshold value實驗數據............................... 32
附錄三 收集之各段軌跡個別建模調整threshold結果................. 34
附錄四 實驗數據總表............................................. 36
附錄五 移動路徑實驗數據總表..................................... 38
附錄六 使用兩種sensor與單一sensor實驗討論..................... 40
參考文獻 [1] Ashbourn, J., “Biometric. Advanced Identity Verification. The Complete Guide” Springer, Berlin Heidelberg New York, 2000.
[2] Clarke, N., Furnell, S., Rodwell, P.and Reynolds, P. “Acceptance of subscriber authentication for mobile telephony devices”, Computers & Security, Vol 21(3), pp. 220-228, 2002.
[3] David M.J. Tax, “Data description toolbox (dd_tools) toolbox version 1.7.3.”, 2009, available from: http://homepage.tudelft.nl/n9d04/dd_tools.html
[4] Defeng Wang, Daniel S. Yeung and Eric C. C. Tsang, “Structured One-Class Classification” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 36, no. 6, pp. 1283–1295, 2006.
[5] D.M.J. Tax, “One-class classification; Concept-learning in the absence of counter-examples”, Ph.D. thesis Delft University of Technology, ASCI Dissertation Series, 65, Delft, 19 June 2001, 1-190.
[6] E. Rukzio. “Physical Mobile Interactions: Mobile Devices as Pervasive Mediators for Interactions with the Real World.” PhD thesis, LMU Munchen, 2006.
[7] Gartner, Inc. “Gartner Identifies the Top 10 Consumer Mobile Applications for 2012”, STAMFORD, Conn., 18 November 2009, available from: http://www.gartner.com/it/page.jsp?id=1230413
[8] Gartner, Inc. “Gartner Says Worldwide Mobile Device Sales to End Users Reached 1.6 Billion Units in 2010; Smartphone Sales Grew 72 Percent in 2010”, Egham, UK,9 February 2011, available from: http://www.gartner.com/it/page.jsp?id=1543014
30
[9] Google, Android? Platform, available from: http://developer.android.com/index.html
[10] Khan, S. S., 'Kernels for One-Class Nearest Neighbour Classification and Comparison of Chemical Spectral Data', Unpublished master's thesis, National University of Ireland Galway, Galway, Ireland, 2010.
[11] N.L. Clarke and S.M. Furnell, “Advanced user authentication for mobile devices“, Computers & Security, Vol 26, pp. 109-119, 2007.
[12] N. L. Clarke and S. M. Furnell, “Authenticating mobile phone users using keystroke analysis”, International Journal of Information Security, Vol 6(1), pp.1-14, 2007
[13] S. Fuenell, “Beyound the PIN: Enhancing user authentication for mobile devices”, Computer Fraud & Security, pp. 12-17, Aug. 2008.
指導教授 梁德容(De-Ron Liang) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明