博碩士論文 985302028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.239.112.140
姓名 王瀚陽(Han-Yang Wang)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 利用自適性權重估測機制改善傳統爬山演算法之對焦問題
(Improvement of Auto Focus for Conventional Climbing Method by Using Adaptive Weighting Estimation Mechanism)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 網路攝影機應用已經逐漸被使用於社交行為。順應趨勢,此應用更進一步廣泛的加入在桌上型電腦、筆記型電腦、平板電腦及智慧型網路電視等許多消費型電子產品中。在使用者操作中,經常會使用對焦的功能以使畫面中感興趣部分更清晰。在定焦式網路攝影機使用上,如果拍攝畫面過遠或太近,經常會發生畫面模糊的狀況。因此需要一個自動對焦功能以使畫面中某部分達到特定期望的清晰度需求。
目前市面上的自動對焦網路攝影機,幾乎皆為系統單晶片架構,其組成元件為影像訊號處理器、影像感測器及搭配音圈馬達等元件所建構成的攝影機模組。基於成本考量下,已有很多不同自動對焦方法被提出來克服在消費型網路攝影機的資源限制(例如緩衝記憶容量及運算複雜度)。其中,爬山演算法因具有低複雜度及容易在硬體上實現特性,因此被廣泛的使用。然而,傳統爬山法經常會有對焦於影像場景中高頻影像區域的問題。這主要會造成當一個畫面中,感興趣區域的影像複雜度低於其它影像內容時,發生對焦錯誤的情況。
本研究針對此問題,提出自適性權重估測機制來改善傳統爬山法,藉由影像差異法偵測出移動前景物體,接著給予該區域適當的權重,最後再針對前景物體重新進行對焦。經實驗結果顯示,此新的方法對於不同複雜度的影像類型及在低光源環境中,有顯著的效能提升,並且不需要大量且複雜的運算。另外,此方法非常適用於低成本的消費型網路攝影機產品中。
摘要(英) Webcams are actively used for social interaction. Accordingly, this sort of application has been successfully visualized in many consumer electronics products, such as notebooks, tablets and smart TVs. In the context of user-driven processing operations, focusing is probably the most frequently used function developed to obtain a particular desired view of a scene. In the case of fixed-focusing webcams, the captured scene will exhibit blurring contents if the image scene is out of focus. It hence drives the demands for achieving a particular desired clarity in the scene with an auto-focusing function.
Almost all of the auto-focusing webcams in the market are based on a system-on-chip(SOC) framework, where a integrated camera module includes lens, complementary metal-oxide-semiconductor(CMOS) sensor, image signal processor(ISP) and voice coil motor(VCM). Due to the consideration of cost, many different auto-focusing approaches have been developed to overcome the limitations pertaining to resources available to consumer webcams. Among these, hill-climbing algorithm is most widely adopted because of its simplicity and easy implementation in hardware for real-time applications. However, traditional hill-climbing solution is limited to focusing on high-frequency blocks of an image scene. This results in a miss-focusing when the complex of region-of-interest (ROI) is much simpler than other contents of an image scene.
Motivated by this, we propose an improved hill-climbing algorithm using an adaptive weighting estimation mechanism in this thesis. Experimental results show that this new solution can perform outstandingly well for various scenes and different light conditions without requiring high computational cost. Moreover, the developed scheme is well-suited for implementation in low-cost consumer webcams.
關鍵字(中) ★ 自動對焦
★ 爬山法
★ 網路攝影機
關鍵字(英) ★ Auto Focus
★ Hill Climbing Search
★ Web Camera
論文目次 Abstract I
摘要 III
目錄 IV
附圖目錄 V
表格目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 自動對焦系統架構介紹 4
2.1 自動對焦攝影機模組介紹 5
2.2 軟體開發架構 6
2.3 光學成像原理 6
2.4 對焦量測準則介紹 7
2.5 對焦搜尋演算法介紹 9
第三章 動態場景中之移動物偵測 13
3.1 移動物偵測 13
3.2 熵的特性及定義 15
第四章 自適性權重估測機制 18
4.1 系統流程 18
4.2 對焦量測準則及搜尋演算法 19
4.3 影像差異之熵值偵測法 21
4.4 利用自適性權重估測機制改善傳統爬山演算法 23
第五章 實驗結果 29
5.1 實驗設備與環境 29
5.2 不同亮度的光源環境下移動物體偵測 32
5.3 自適性權重估測與傳統爬山法 36
第六章 結論與未來方向 40
6.1 結論 40
6.2 未來方向 41
參考文獻 42
參考文獻 [1]K. Ooi, K. Izumi, M. Nozaki and I. Takeda, “An advanced autofocus system for video camera using quasi condition reasoning,” IEEE Transactions on Consumer Electronics, vol. 36,no. 3, pp. 526-530, Aug. 1990.
[2]K. S. Chai, J. S. Lee and S. 1. KO, “New autofocusing technique using the frequency selective weighted median filter for video cameras,” IEEE Transactions on Consumer Electronics, vol. 45, no. 3, pp. 820-827, Aug. 1999.
[3]J. H. Lee, K. S. Kim and B. D. Nam, “Implementation of a passive automatic focusing algorithm for digital Still camera,” IEEE Transactions on Consumer Electronics, vol. 41, no. 3, pp. 449-454, Aug. 1995.
[4]J. He, R. Zhou and Z. Hong, “Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera,” IEEE Transactions on Consumer Electronics, vol. 49, pp. 257-262, May 2003.
[5]S. K. Nayar, M. Watanabe and M. Noguchi, “Real-Time Focus Range Sensor,” Fifth International Conference on Computer Vision, vol. 18, pp. 995-1001, Jun. 1995.
[6]J. Y. Zheng, T. Sakai and N. Abe, “Guiding Robot Motion Using Zooming and Focusing,” Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1076-1082, Nov. 1996.
[7]J. Widjaja and S. Jutamulia, “Wavelet Transform-Based Autofocus Camera Systems,” Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 49-51, Nov. 1998.
[8]H. S. Gregory, “Practical Computer-Aided Lens Design,” 1st, edition, Willmann-Bell, Virginia, Oct. 1998.
[9]W. Kesseler and J. Fischer, “Analytical Model of Autofocus Systems with CCD Camera,” Proceedings of the International Society of Optical Engineering, In ternational Confer ence on Sensors, Camera Systems for Scientific, Industrial and Digital Photography Applications, vol. 3965, pp. 396-380, May 2000.
[10]G. S. G. Beveridge and R. S. Schechter, “Optimization: Theory and Practice,” McGraw-Hill, New York, Sep. 1970.
[11]J. Baina and J. Dublet, “Automatic Focus and Iris Control for Video Cameras,” Fifth International Conference on Image Processing and its Applications, pp. 232-235, July 1995.
[12]N. K. Chern, P. A. Neow, H. Marcelo and J. Ang, “Practical Issues in Pixel-Based Autofocusing for Ma chine Vision,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2791-2796, 2001.
[13]C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: Real-Time Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, July 1997.
[14]I. Haritaoglu, D. Harwood and L. S. Davis, “W4: Who? When? Where? What? A Real-Time System for Detecting and Tracking People,” Proceedings International Conference on Face and Gesture Recognition, pp. 14-16, April 1998.
[15]J. Barron, D. Fleet, S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision, vol. 12, no. 1, pp. 42-77, 1994.
[16]C. Anderson, Peter Burt, G. van der Wal, “Change detection and tracking using pyramid transformation techniques,” In Proceedings of SPIE - Intelligent Robots and Computer Vision, vol. 579, pp. 72-78, Dec. 1985.
[17]Minolta illuminance meter T-10 Spec., http://www.prochem.com.tw/pdf/T-10&T-10M.pdf
指導教授 范國清、陳映濃
(Kuo-Chin Fan、Ying-Nong Chen)
審核日期 2013-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明