博碩士論文 985401009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.237.67.179
姓名 胡至展(Chih-Chan Hu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 表面電漿共振效應於光奈米元件之數值研究
(Numerical Investigation of Surface Plasmon Resonance Effects on Optical Nanodevices)
相關論文
★ 金氧半電容元件的暫態模擬之數值量測★ 雙載子電晶體在一維和二維空間上模擬的比較
★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用
★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用★ 探討分離式簡化電路模型在半導體元件模擬上的效益
★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用★ 二維半導體元件模擬的電流和電場分析
★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析★ 元件分割法及其在二維互補式金氧半導體元件之模擬
★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本篇論文中,我們將依序由微小奈米粒子於光觸媒系統的應用出發,逐步探討到體積較大的光奈米元件,接著論及各元件間連結所需的奈米波導等三領域的表面電漿共振效應之研究與應用。
在第一個領域中,我們利用三維有限元素法,針對銀奈米珠成長於二氧化鈦光觸媒活化層上之表面電漿共振效應來進行數值研究。那麼由結果顯示論文中結構C在金屬奈米粒子附近能呈現出較強的近場值。另外基於模擬結果,我們瞭解到具有銀奈米珠之二氧化鈦層能在近紫外光、可見光及近紅外光頻譜上呈現侷域性較強的表面電漿共振效應。其電場強度增強之主要因素,係因填充進銀奈米珠之介電值大小逐步提高所肇致。
接著在第二領域中,我們同樣利用三維有限元素法來針對週期性排列之外廓式領結型奈米天線陣列(POBNA)/實心式領結型奈米天線陣列(PSBNA)埋入基板之效應與穿隧特性進行數值研究。其中間隙場增強特性、穿隧特性、電荷分佈及電荷模型之實部與虛部等議題,皆被我們徹底的研究及討論。尤其當入射光波長大於0.775 μm時,週期性外廓式領結型奈米天線埋入時之gap enhancement更是高達2×108。而且我們也發現POBNA/PSBNA埋入矽基板之深度可作為場強及共振波峰值位移量等重要因子之參考依據。同時比起過去其他論文中曾提及之POBNA/PSBNA結構,這次我們提供了更微小尺度之設計和更寬廣的吸收頻譜應用。
最後在第三個領域中,我們也針對不同型態之S型銀奈米線波導進行數值分析及研究,同時也發展了能透過某段空氣距離,將入射光耦合至彎曲型電漿奈米線波導之重要設計指南。藉由三維有限元素法之數值研究結果,我們瞭解如果在S型銀電漿奈米線波導外層利用介電質材料來包覆的話,其表面電漿子電場侷域特性會被大大增強。其中當入射光波長介於300 nm~ 345 nm及455 nm~ 780 nm之波段時,於波導末端隔200 nm處偵測近場強度的話,我們能獲得高於200 V/m之近場強度,顯見我們的設計提供了極佳的近場增強及更寬頻譜的傳播範圍。
摘要(英) This dissertation describes a study on three applications of surface plasmon resonance (SPR): the use of nanoparticles in a photocatalyst, the investigation of larger optical nanodevices, and waveguide connections among components.
Regarding the first application, a three-dimensional (3D) finite element method (FEM) was used to numerically investigate the effect of SPR on the photocatalytic activity of silver nanobeads photodeposited onto a TiO2 layer. Results showed that the proposed case C structure exhibited increased electric near-field amplitude around the metal nanoparticles (MNPs). Simulation results showed that Ag nanobeads photodeposited onto a TiO2 layer support localized SPR in near-UV, visible, and near-infrared spectral domains. The region of an enhanced electric field intensity increased as the filling dielectric medium in dielectric hole (DH) increased.
Regarding the second application, FEM with 3D calculations was used to numerically investigate the effects and transmittance properties of a periodic outline bowtie nanoantenna array (POBNA)/periodic solid bowtie nanoantenna array (PSBNA) embedded in a silica substrate at different depths. Investigation of the gap enhancement, transmittance properties, charge distribution, and the real and image charge model is discussed here. Gap enhancements associated with the embedding of POBNA exceeded 2 × 108 for incident wavelengths above 0.775 μm. The embedded depth of the POBNA/PSBNA was found to be a crucial parameter that could influence field enhancement and the peak resonant wavelength position. This finding could facilitate realizing more compact dimensions and a wider spectral domain compared with those of previously proposed structures while maintaining the POBNA/PSBNA size.
Regarding the third application, an S-shaped Ag plasmonic nanowire waveguide (SSAPNW) was analyzed numerically by using 3D FEM, and key design guidelines that can facilitate ensuring effective propagation of incident light through air into a bending plasmonic nanowire waveguide were developed. The results indicated that the confinement of the surface plasmon fields of the SSAPNW could be considerably improved by covering the metallic nanowire with a dielectric coating. Near-field intensities at a distance of 200 nm from the distal end of the SSAPNW can exceed 200 V/m for incident wavelengths in the ranges 300 nm <  < 345 nm and 455 nm <  < 780 nm; thus, a high field intensity and broadband propagation can be achieved.
關鍵字(中) ★ 數值研究
★ 光奈米元件
★ 表面電漿共振
★ 光觸媒
★ 奈米天線
★ 奈米線波導
關鍵字(英) ★ Numerical Investigation
★ Optical Nanodevices
★ Surface Plasmon Resonance
★ Photocatalyst
★ Nanoantenna
★ Nanowire Waveguide
論文目次 摘要 . I
Abstract . III
誌謝 V
Contents VI
List of Figures . VIII
Chapter 1 Introduction 1
1-1. Motivation . 1
1-2. Organization of the Dissertation . 1
1-3. Photocatalytic Activity . 3
1-4. Plasmonic Nanoantennas . 3
1-5. Nanophotonic Wire Waveguides . 4
Chapter 2 5
Theoretical Background 5
2-1. Optical Properties of Materials . 5
2-1-1 Maxwell’s Equations . 5
2-1-2 Electromagnetic Wave 6
2-1-3 Dielectric Function of a Metal . 7
2-2. Plasmons 9
2-3. Surface Plasmon Resonance 10
2-4. Finite Element Method for Nanoparticle Scattering Analysis . 16
2-4-1 Basic Formulation of the Finite Element Method 17
2-4-2 Numerical Methods and Parallelization . 18
Chapter 3 22
Plasmonic Photocatalysis Nanobeads . 22
3-1. Simulation Method and Models 25
3-2. Results and Discussion . 28
3-3. Summary . 35
Chapter 4 36
Plasmonic Nanoantennas . 36
4-1. Simulation Method and Models 37
4-2. Results and Discussion . 40
4-3. Summary . 48
Chapter 5 49
Plasmonic Nanowire Waveguides 49
5-1. Simulation Method and Models 51
5-2. Design, Optimization, Results and Discussion . 53
5-3. Summary . 63
Chapter 6 64
Conclusion . 64
References . 67
參考文獻 [1] Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, pp.1536-1540, Aug. 2002.
[2] K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett., vol. 91, pp.227402, Nov. 2003.
[3] W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B, vol. 76, pp. 115411, Sept. 2007.
[4] R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B, vol. 73, pp. 235402, Jun. 2006.
[5] Serap Aksu, Ahmet A. Yanik, Ronen Adato, Alp Artar, Min Huang, and Hatice Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano. Lett., vol. 10, pp. 2511-2518, Jun. 2010.
[6] S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express, vol. 19, pp.15532-15537, Aug. 2011.
[7] H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express, vol. 16, pp. 9144-9154, Jun. 2008.
[8] Amir Nevet, Nikolai Berkovitch, Alex Hayat, Pavel Ginzburg, Shai Ginzach, Ofir Sorias and Meir Orenstein, “Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors,” Nano Lett., vol. 10, pp. 1848-1852, Apr. 2010.
[9] F. M. Zhu ,Y. Y. Zhang, L. F. Shen and Z. Gao, “Subwavelength Guiding of Terahertz Radiation by Shallowly Corrugated Metal Surfaces,” Journal of Electromagnetic Waves and Applications, vol. 26, pp. 120-129, Apr. 2012.
[10] A. Bahari and E. Amraie, “Propagation of surface hybrid modes on metallic cylindrical nanoshells,” Phys. of Plasmas, vol. 19, pp. 114502, Nov. 2012.
[11] Yuan-Fong Chau, Han-Hsuan Yeh, Din-Ping Tsai, “Surface plasmon effects arising from three-pair arrays of silver-shell nanocylinders,” Physics of Plasmas, vol. 16, pp. 022303, 2009.
[12] Y. G. Liu, W. C. H. Choy, W. E. I. Sha and W. C. Chew, “Unidirectional and wavelength-selective photonic sphere-array nanoantennas,” Optics Letters, vol. 37, pp. 2112-2114, 2012.
[13] F. Neubrech and Annemarie Pucci, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection”, Phys. Rev. Lett., vol. 101, pp. 157403, Oct. 2008.
[14] L. Wang, L. Cai, J. Zhang, W. Bai, H. Hu and G. Song, “Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy,” J. Raman Spectrosc, vol 42(6), pp.1263-1266, 2011.
[15] Drude, P., “Zur elektronentheorie der metalle,” Annalen Der Physik, Vol. 306, No. 3, pp. 566-613, 1900.
[16] Drude, P., “Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte,” Annalen Der Physik, Vol. 308, No. 11, pp. 369-402, 1900.
[17] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review, vol 106, pp. 874-881, 1957.
[18] E. Stern and R. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Physical Review, vol. 120, pp.130, 1960.
[19] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, vol.111, 1986.
Nathan Charles Lindquist, “Engineering metallic nanostructures for surface plasmon resonance sensing,” Dissertation, pp. 14-16, 2010.
[20] E. Kretschmann, “Die bestimmung optischer konstanten von metallen die bestimmungoptischer konstanten von metallen durch anregung von oberfliichenplasmaschwingungen,” Z. Physik, vol. 241, pp. 313, 1971.
[21] A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 5358, 1972.
[22] Y. J. Jang, C. Simer, T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull., vol. 41, pp.67-77, 2006.
[23] L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics, vol. 4, pp.43004, 2010.
[24] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, “Environmental
[25] Applications of Semiconductor Photocatalysis,” Chem. Rev., vol. 95, pp. 69-96, 1995.
[26] J. J. Chen, Jeffrey C.S. Wu, P. C. Wu, D.P. Tsai, J. Phys. Chem. C (2012) 116 26535.
[27] Y.L. Chen, L.-C. Kuo, M.L. Tseng, H.M. Chen, C.-K. Chen, H.J. Huang, R.-S. Liu, D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Expr., vol. 21(6), pp. 7240-7249, 2013.
[28] Z.W. Liu, W.B. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, “Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination,” Nano Lett., vol. 11(3), pp. 1111-1116, 2011.
[29] P.C.K. Vesborg, S.-I. In, J.L. Olsen, T.R. Henriksen, B.L. Abrams, Y.Hou, A. Kleiman-Shwarsctein, O. Hansen, I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C, vol. 114, pp. 1162-1168, 2010.
[30] C.Y. Chang, N.L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor,” Ind. Eng. Chem. Res., vol. 49, pp. 12173-12179, 2010.
[31] H.C. Yatmaz, C. Wallis, C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 ,” Chemosphere, vol. 42, pp. 397, 2001.
[32] T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog., vol. 46, pp. 781, 2007.
[33] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. AM. CHEM. SOC., vol. 130, pp. 1676-1680, Feb. 2008.
[34] H. Long, G. Yang, A. Chen, Y. Li, P. Lu., “Femtosecond Z-scan measurement of third-order optical nonlinearities in anatase TiO2 thin films,” Opt. Commun., vol. 282, pp. 1815-1818, 2009.
[35] X.M. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys., Vol. 76, pp. 046401, Mar. 2013.
[36] D. Li, L. Wang, G. Zhang, “,”Opt. Commun., vol. 286, pp. 182, 2013.
[37] L. M. Liz-Marzan and P. Mulvaney, “The assembly of coated nanocrystals,” J. Phys. Chem. B, vol. 107, pp. 7312, 2003.
[38] T. Ung, L. M. Liz-Marzan and P. Mulvaney, “Controlled method for silica coating of silver colloids, Influence of coating on the rate of chemical reactions,” Langmuir, vol. 14, pp. 3740-3748, 1998.
[39] F. Caruso, M. Spasova, V. Saigueirino-Maceira, L. M. Liz-Marzan, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Advanced Materials, vol. 13, pp. 1090, 2001.
[40] P. Mulvaney, L. M. Liz-Marzan, M. Giersig, T. Ung , “Silica encapsulation of quantum dots and metal clusters,” J. Mater. Chem., vol. 10, pp. 1259, 2000.
[41] C. J. Zhong and M. M. Maye, “Core-shell assembled nanoparticles as catalysts,” Advanced Materials, vol. 13, pp. 1507-1511, 2001.
[42] V. Hardikar and E. Matijevic, “Influence of Ionic and Nonionic Dextrans on Formation of Calcium Hydroxide and Calcium Carbonate Particles,” J. Colloid Interface Sci, vol. 221, pp. 133, 2000.
[43] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N. Halas, “Nanoengineering of optical resonances,” J. Chem. Phys. Lett., vol. 288, pp. 243, 1998.
[44] R. Sellappan, M. G. Nielsen, F. González-Posada, P.C.K. Vesborg, I. Chorkendorff and D. Chakarov, “Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites,” J. of Catalysis, vol. 307, pp. 214, 2013.
[45] Y. F. Chau, Y. J. Lin and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Optics Express, vol. 18, pp. 3510-3518, 2010.
[46] Y. F. Chau, H. H. Yeh, D. P. Tsai, “ A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric holes,” J. of Electromagn. Waves and appli., vol. 24, pp. 1621-1632, Jul. 2010.
[47] J.P. Zimmer, S.W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni and M.G. Bawendi, “Size Series of Small Indium Arsenide-Zinc Selenide Core-Shell Nanocrystals and Their Application to In Vivo Imaging,” J. Am. Chem. Soc., vol. 128, pp. 2526-2527, 2006.
[48] A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone, J. C. Patrone, “Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates,” Nanotechnology, vol. 20, pp. 215705, 2009.
[49] D. J. Wu, X. D. Xu, X. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” J. Solid State Commun., vol. 148, pp. 163-167, 2008.
[50] P. M. Gresho and R. L. Sani, “Incompressible Flow and Finite Element Method,” Vol. 1 & 2, Wiley, New York, 2000.
[51] COMSOL Multiphysics TM, http://www.comsol.com.
[52] Okamoto T and In Kawata S (Ed), “Near-Field Optics and Surface Plasmon Polaritons,” Springer, Berlin, pp. 99, 2001.
[53] Y. F. Chau, “Surface Plasmon Effects excited by the Dielectric Hole in a Silver-shell Nanospherical Pair,” Plasmonics, Vol. 4, pp. 253-259, 2009.
[54] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys Rev B, vol. 6, pp. 4370-4379, 1972.
[55] E. Palik, Handbook of Optical Constants of Solids; Academic Press Inc.: U.S., 1985.
[56] R. Sardar, T.B. Heap, J.S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionali- zation approach,” J. Am. Chem. Soc., vol. 129, pp. 5356, 2007.
[57] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett., vol. 288, pp. 243, 1998.
[58] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, J. H. Hafner, “Scattering Spectra of Single Gold Nanoshells,” Nano let., vol. 4, pp. 2355-2359, 2004.
[59] P. K. He, M. Zhang, D. M. Yang and J. J. Yang, “Preparation of Au-loaded TiO2 by photochemical deposition and ozone photocatalytic decomposition,” Surf. Rev. Lett., vol. 13, pp. 51-55, 2006.
[60] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science, vol. 302, pp. 419, 2003.
[61] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, Berlin, 2007.
[62] S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express, vol. 19, pp. 15532-15537, 2011.
[63] J. S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., vol. 10, pp. 2105-2110, 2010.
[64] Y. F. Chau, H. H. Yeh and D. P. Tsai, “A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric holes,” J. of Electromagn. Waves and appli., vol. 24, pp. 1621-1632, Jul., 2010.
[65] Yuan-Fong Chau, and Han-Hsuan Yeh, “A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances,” J. nanopart. Res., vol 23, pp. 637-644, 2011.
[66] G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett., vol. 31, pp. 2750-2752, 2006.
[67] A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nature Photonics, vol. 2, pp. 307-310, 2008.
[68] F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett., vol. 101, pp. 157403, 2008.
[69] Y. F. Chau, H. H. Yeh, C. C. Liao, H. F. Ho, C. Y. Liu and D. P. Tsai, “Controlling surface plasmon of several-pair arrays of silver-shell nanocylinders,” Appl. Opt., vol. 49, pp. 1163-1169, 2010.
[70] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
[71] S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, “High-throughput Nanofabrication of Plasmonic Infrared NanoAntenna Arrays for Vibrational Nanospectroscopy,” Nano. Lett., vol. 10, pp. 2511-2518, 2010.
[72] Y. F. Chau, H. H. Yeh and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair”, Applied Optics, vol.47, pp.5557-5561, Oct. 2008.
[73] C. Noguez, “Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment,” J. Phys. Chem. C, vol. 111, pp. 3806-3819, Feb. 2007.
[74] J.Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M.l R. Wasielewski, and T. W. Odom , “Extraordinary Nonlinear Absorption in 3d Bowtie Nanoantennas,” Nano Lett., vol. 12, pp. 269-274, 2012.
[75] A. Leitner, W. Rechberger, A. Hohenau, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun., vol. 220, pp. 137, 2003.
[76] I. S. Maksymov, A. R. Davoyan, A. E. Miroshnichenko, C. Simovski, P. Belov, and Yu. S. Kivshar, “Multifrequency tapered plasmonic nanoantennas,” Opt. Commun., vol. 285, pp. 821-824, 2012.
[77] R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Opt. Commun., vol. 285, pp. 3334-3340, Jul. 2012.
[78] G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett., vol 87, PP. 131102, 2005.
[79] X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q Yang, X. N. Zhang, Y. G. Ma, H. K. Yu and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett., vol. 9, pp. 4515-4519, 2009.
[80] P. Bharadwaj, B. Deutsch B and L. “Novotny Optical antennas,” Adv. Opt. Photon, pp. 438-483, 2009.
[81] E. Verhagen, M. Spasenović, A. Polman, L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett., vol. 102, pp. 203904, 2009.
[82] D. Anuj, C. Michael and V. D. Tuan, “Bimodal behavior and isobestic transition pathway in surface plasmon resonance sensing,” Optics Express, vol. 20, pp. 23630-23642, 2012.
[83] Y. F. Chau, M. W. Chen, D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Applied Optic, vol. 48, pp. 617-622, 2009.
[84] L. Tong, J. Lou and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, vol. 12, pp. 1025-1035, 2004.
[85] M. Law et al. “Nanoribbon waveguides for subwavelength photonics integration. Science,” vol. 305, pp.1269-1273, 2004.
[86] Pile D. F. P., “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Gramotnev DK, Opt. Lett. Vol. 30, pp. 1186-1188, 2005.
[87] D. R. Mason, D.K. Gramotnev and K. S. Kim, “Wavelength-dependent transmission through sharp 90◦ bends in sub-wavelength metallic slot waveguides.” Opt. Express, vol. 18, pp. 16139-16145, 2010.
[88] Y. J. Chang and Y. C. Liu, “Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration,” Optics Express, vol. 19, pp. 3063-3076, .2011.
[89] D. K. Gramotnev and Vernon K. C., “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B, vol. 86, pp. 7-17, 2007.
[90] D. E. Chang, A. S. Sorensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys., vol. 3, pp. 807-812, 2007.
[91] C. E. Roma´n-Velazquez, C. Noguez, R. G. Barrera, “Optical Properties of a Spheroid–Substrate System. Phys,” Status Solidi (a), vol. 175, pp. 393-397, 1999.
[92] Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express, vol. 21, pp. 6139-6152, 2013.
[93] H. Ditlbacher , A. Hohenau , D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” PRL, vol. 95, pp. 257403, 2005.
[94] J. C. Quail, J. G. Rako and H. J. Simon, “Long range surface-plasmon modes in silver and aluminum films,” Optics Letters, vol. 8, pp. 377-379, 1983.
[95] T. Nikolajsen, K. Leosson I. Salakhutdinov and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Applied Physics Letters, vol. 82, pp. 668-670. 2003.
[96] E. N. Economon, “Surface-plasmonin thin films,” Physical Review, vol. 182, pp. 539-554, 1969.
[97] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., vol. 47, pp. 1927-1930, 1981.
指導教授 蔡曜聰、周趙遠鳳
(Yao-Tsung Tsai、Yuan-Fong Chau)
審核日期 2015-4-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明