博碩士論文 985401010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.163.213.149
姓名 彭徐鈞(Syu-Jyun Peng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發
(Development of Automatic Detection Methods for Exploration of Lesional and Non-lesional Neurological Disorders with Magnetic Resonance Imaging)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁振造影包含病理相關資訊,根據磁振造影所得到的生物標記具診斷與治療價值,但是準確檢測此類生物標記具挑戰性,因為疾病的病灶在磁振造影上通常無法直接辨識,甚至有些疾病在磁振造影上並無表現出其病灶。急性缺血性腦中風在磁振造影上有病灶表現,新皮質癲癇神經疾病則無;本論文針對這些有病灶與無病灶的磁振造影生物標記提出自動偵測方法。對於在磁振造影上有病灶表現的急性缺血性腦中風,本論文提出一電腦輔助自動分割和量化方法以辨識腦部梗塞區與白質病變區並且計算這些病灶之體積。此方法使用多重磁振造影,根據病灶的磁振造影強度分布的統計圖定義一個可以自動調整的強度門檻值來區分病灶區與非病灶區。此方法與傳統使用的半自動方法所得到的結果具高度一致性。對於在磁振造影上無表現出病灶的新皮質癲癇神經疾病,本論文提出的方法將磁振造影腦部結構標記模板變形轉化成個人化的神經解剖結構圖,挑選出感興趣的白質纖維與腦深部灰質結構,以探討這些結構與癲癇發作的關聯性。本論文所提出的磁振造影生物標記自動擷取方法利於探索在磁振造影上有表現出病灶以及無表現出病灶的腦神經疾病,以輔助臨床診斷、確定疾病的風險、以及協助引導治療和預後。
摘要(英) Magnetic Resonance Image (MRI) contains pathology-related information. Detection of MRI-based biomarkers is of diagnostic and therapeutic value. Accurate detection of this type of markers is challenging because they may not be directly discernible and some are even non-lesional on conventional MRI. This dissertation presents different methods for finding lesional biomarkers of acute ischemic stroke and non-lesional ones of neocortical seizures. For lesional biomarkers of acute ischemic stroke, we proposed a computer-assisted segmentation and quantification method to depict cerebral infarct and white matter hyperintensities (WMH). The cerebral infarct and WMH volume were measured based on the histographic distribution of lesions to define self-adjusted intensity thresholds using multispectral MRI. The proposed method attained high agreement with the semi-automatic method. For non-lesional biomarkers of neocortical epilepsy, a popular fiber-labeled MRI template was transformed to each subject’s neuroanatomy to generate personalized atlases for objective and automatic region-of-interest (ROI) demarcation. We investigated supratentorial white matter and subcortical gray matter structures from high-resolution raw structural images and diffusion tensor images with automatic ROI registrations in neocortical seizures. The automatic methods presented in this dissertation facilitates the exploration of lesional and non-lesional biomarkers of neurological disorders for assisting the clinical diagnosis, identifying the risk, and helping guide the treatment and prognosis of the diseases.
關鍵字(中) ★ 磁振造影
★ 急性缺血性腦中風
★ 腦部梗塞
★ 白質病變
★ 新皮質癲癇
★ 神經路徑
★ 腦深部灰質
關鍵字(英) ★ Magnetic Resonance Imaging
★ Acute ischemic stroke
★ Cerebral Infarction
★ White matter hyperintensity
★ Focal neocortical epilepsy
★ Supratentorial neural pathways
★ Subcortical gray matter
論文目次 摘要 I
Abstract II
Acknowledgments IV
Table of Contents V
List of Figures VII
List of Tables XI
Chapter 1 Introduction 1
1.1 Background 2
1.2 Motivation, Problem Statement and Research Goal 5
1.3 Related Works 7
1.4 Organization of This Dissertation 16
Chapter 2 Automatic Cerebral Infarct Segmentation 17
2.1 Overview 17
2.2 Materials and Methods 18
2.2.1 Subjects and Image Acquisition 18
2.2.2 Automatic Infarct Detection Procedure 19
2.2.3 Performance Evaluation 22
2.2.4 Preliminary Experiment 22
2.3 Results 23
2.4 Summary 32
Chapter 3 Automatic White Matter Hyperintensities Segmentation 33
3.1 Overview 33
3.2 Materials and Methods 34
3.2.1 Subjects and MR Imaging Protocol 34
3.2.2 The Semi-automatic Segmentation of WMH 35
3.2.3 Histographic Characterization of WMH 36
3.2.4 Quantitative Evaluations 42
3.3 Results 42
3.4 Summary 50
Chapter 4 Evaluating the Properties of Neural Pathways of Neocortical Epilepsy 52
4.1 Overview 52
4.2 Materials and Methods 53
4.2.1 Subjects 53
4.2.2 Acquisition of Structural MRI and DTI 55
4.2.4 Regions-of-Interest 57
4.2.5 Statistical Analysis 58
4.3 Results 59
4.3.1 Estimation of Diffusion Parameters from Personalized Anatomical Reference Atlas 59
4.3.2 Correlations with Age at Seizure Onset, Duration and Severity of Epilepsy 63
4.4 Summary 64
Chapter 5 Evaluating the Subcortical GM Abnormalities of Neocortical Epilepsy 65
5.1 Overview 65
5.2 Materials and Methods 66
5.2.1 Subjects 66
5.2.2 MRI Acquisition 68
5.2.3 VBM Analysis of Whole Brain GM 68
5.2.4 Measurement of Volumes and Diffusion Parameters of Subcortical GM Structures 69
5.2.5 Statistical Analysis 71
5.3 Results 71
5.3.1 VBM Analysis 71
5.3.2 Volume Difference 72
5.3.3 Diffusion Parameter Difference 73
5.3.4 Correlations with Age at Seizure Onset and Disease Duration 75
5.4 Summary 76
Chapter 6 Conclusions and Future Works 78
6.1 Conclusions 78
6.2 Future Works 78
References 80
Appendix 103
Vita 114
參考文獻 1.Pierpaoli C, Basser PJ: Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996, 36:893-906.
2.Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G: Diffusion tensor MR imaging of the human brain. Radiology 1996, 201:637-648.
3.Hajnal JV, Doran M, Hall AS, Collins AG, Oatridge A, Pennock JM, Young IR, Bydder GM: MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr 1991, 15:1-18.
4.Beaulieu C, Allen PS: Determinants of anisotropic water diffusion in nerves. Magn Reson Med 1994, 31:394-400.
5.Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T: Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 1994, 15:231-238.
6.Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J: Identification of "premyelination" by diffusion-weighted MRI. J Comput Assist Tomogr 1995, 19:28-33.
7.Sevick RJ, Kanda F, Mintorovitch J, Arieff AI, Kucharczyk J, Tsuruda JS, Norman D, Moseley ME: Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology 1992, 185:687-690.
8.Anderson AW, Zhong J, Petroff OA, Szafer A, Ransom BR, Prichard JW, Gore JC: Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn Reson Med 1996, 35:162-167.
9.Basser PJ, Mattiello J, LeBihan D: Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994, 103:247-254.
10.Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR: Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 1995, 37:231-241.
11.Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME: Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 1997, 41:574-580.
12.Zhong J, Petroff OA, Prichard JW, Gore JC: Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn Reson Med 1995, 30:241-246.
13.Zhong J, Petroff OA, Prichard JW, Gore JC: Barbiturate-reversible reduction of water diffusion coefficient in flurothyl-induced status epilepticus in rats. Magn Reson Med 1995, 33:253-256.
14.Nakasu Y, Nakasu S, Morikawa S, Uemura S, Inubushi T, Handa J: Diffusion-weighted MR in experimental sustained seizures elicited with kainic acid. AJNR Am J Neuroradiol 1995, 16:1185-1192.
15.Ebisu T, Rooney WD, Graham SH, Mancuso A, Weiner MW, Maudsley AA: MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magn Reson Med 1996, 36:821-828.
16.Wang Y, Majors A, Najm I, Xue M, Comair Y, Modic M, Ng TC: Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by kainic acid. Epilepsia 1996, 37:1000-1006.
17.Lux HD, Heinemann U, Dietzel I: Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 1986, 44:619-639.
18.Duong TQ, Ackerman JJ, Ying HS, Neil JJ: Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn Reson Med 1998, 40:1-13.
19.Wieshmann UC, Symms MR, Shorvon SD: Diffusion changes in status epilepticus. Lancet 1997, 350:493-494.
20.Diehl B, Najm I, Ruggieri P, Foldvary N, Mohamed A, Tkach J, Morris H, Barnett G, Fisher E, Duda J, Luders HO: Periictal diffusion-weighted imaging in a case of lesional epilepsy. Epilepsia 1999, 40:1667-1671.
21.Hugg JW, Butterworth EJ, Kuzniecky RI: Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations. Neurology 1999, 53:173-176.
22.Wieshmann UC, Clark CA, Symms MR, Franconi F, Barker GJ, Shorvon SD: Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imaging 1999, 17:1269-1274.
23.Basser PJ, Mattiello J, LeBihan D: MR diffusion tensor spectroscopy and imaging. Biophys J 1994, 66:259-267.
24.Basser PJ: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995, 8:333-344.
25.Basser PJ, Pierpaoli C: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996, 111:209-219.
26.Gross DW, Concha L, Beaulieu C: Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia 2006, 47:1360-1363.
27.Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS: Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 2008, 40:728-737.
28.McDonald CR, Ahmadi ME, Hagler DJ, Tecoma ES, Iragui VJ, Gharapetian L, Dale AM, Halgren E: Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology 2008, 71:1869-1876.
29.Widjaja E, Geibprasert S, Otsubo H, Snead OC,3rd, Mahmoodabadi SZ: Diffusion tensor imaging assessment of the epileptogenic zone in children with localization-related epilepsy. AJNR Am J Neuroradiol 2011, 32:1789-1794.
30.Afzali M, Soltanian-Zadeh H, Elisevich KV: Tract based spatial statistical analysis and voxel based morphometry of diffusion indices in temporal lobe epilepsy. Comput Biol Med 2011, 41:1082-1091.
31.Adamson J, Beswick A, Ebrahim S: Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis 2004, 13:171-177.
32.Saunders DE, Clifton AG, Brown MM: Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke 1995, 26:2272-2276.
33.Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, Haley EC: Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS Investigators. Stroke 1999, 30:293-298.
34.Pineiro R, Pendlebury ST, Smith S, Flitney D, Blamire AM, Styles P, Matthews PM: Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 2000, 31:672-679.
35.Schiemanck SK, Post MW, Kwakkel G, Witkamp TD, Kappelle LJ, Prevo AJ: Ischemic lesion volume correlates with long-term functional outcome and quality of life of middle cerebral artery stroke survivors. Restor Neurol Neurosci 2005, 23:257-263.
36.Menezes NM, Ay H, Wang Zhu M, Lopez CJ, Singhal AB, Karonen JO, Aronen HJ, Liu Y, Nuutinen J, Koroshetz WJ, Sorensen AG: The real estate factor: quantifying the impact of infarct location on stroke severity. Stroke 2007, 38:194-197.
37.Vock J, Achermann P, Bischof M, Milanova M, Muller C, Nirkko A, Roth C, Bassetti CL: Evolution of sleep and sleep EEG after hemispheric stroke. J Sleep Res 2002, 11:331-338.
38.Muller C, Achermann P, Bischof M, Nirkko AC, Roth C, Bassetti CL: Visual and spectral analysis of sleep EEG in acute hemispheric stroke. Eur Neurol 2002, 48:164-171.
39.Vogt G, Laage R, Shuaib A, Schneider A, VISTA Collaboration: Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the Virtual International Stroke Trials Archive (VISTA) database. Stroke 2012, 43:1266-1272.
40.Zaidi SF, Aghaebrahim A, Urra X, Jumaa MA, Jankowitz B, Hammer M, Nogueira R, Horowitz M, Reddy V, Jovin TG: Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke 2012, 43:3238-3244.
41.Rangaraju S, Owada K, Noorian AR, Nogueira RG, Nahab F, Glenn BA, Belagaje SR, Anderson AM, Frankel MR, Gupta R: Comparison of final infarct volumes in patients who received endovascular therapy or intravenous thrombolysis for acute intracranial large-vessel occlusions. JAMA Neurol 2013, 70:831-836.
42.Al-Khaled M, Matthis C, Munte TF, Eggers J, QugSS2-Study: The incidence and clinical predictors of acute infarction in patients with transient ischemic attack using MRI including DWI. Neuroradiology 2013, 55:157-163.
43.Lettau M, Laible M: 3-T high-b-value diffusion-weighted MR imaging in hyperacute ischemic stroke. J Neuroradiol 2013, 40:149-157.
44.Newcombe VF, Das T, Cross JJ: Diffusion imaging in neurological disease. J Neurol 2013, 260:335-342.
45.Perez de la Ossa N, Hernandez-Perez M, Domenech S, Cuadras P, Massuet A, Millan M, Gomis M, Lopez-Cancio E, Dorado L, Davalos A: Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke. Cerebrovasc Dis 2012, 34:376-384.
46.Ogawa T, Inugami A, Fujita H, Hatazawa J, Shimosegawa E, Noguchi K, Okudera T, Kanno I, Uemura K, Suzuki A: MR diagnosis of subacute and chronic subarachnoid hemorrhage: comparison with CT. AJR Am J Roentgenol 1995, 165:1257-1262.
47.Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR: A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J Neurosci 2000, 20:2683-2690.
48.Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF: Voxel-based lesion-symptom mapping. Nat Neurosci 2003, 6:448-450.
49.Lemieux L, Hagemann G, Krakow K, Woermann FG: Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn Reson Med 1999, 42:127-135.
50.Tang H, Wu EX, Ma QY, Gallagher D, Perera GM, Zhuang T: MRI brain image segmentation by multi-resolution edge detection and region selection. Comput Med Imaging Graph 2000, 24:349-357.
51.Liew AW, Yan H: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imaging 2003, 22:1063-1075.
52.Van Leemput K, Maes F, Vandermeulen D, Suetens P: Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999, 18:897-908.
53.Pham DL, Prince JL: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 1999, 18:737-752.
54.Shen S, Sandham W, Granat M, Sterr A: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 2005, 9:459-467.
55.Zhang DQ, Chen SC: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med 2004, 32:37-50.
56.Ashburner J, Friston KJ: Unified segmentation. Neuroimage 2005, 26:839-851.
57.Bhanu Prakash KN, Gupta V, Jianbo H, Nowinski W: Automatic processing of diffusion-weighted ischemic stroke images based on divergence measures: slice and hemisphere identification, and stroke region segmentation. International Journal of Computer Assisted Radiology and Surgery 2008, 3:559-570.
58.Li W, Tian J, Li E, Dai J: Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification. Neuroimage 2004, 23:1507-1518.
59.Prakash KNB, Gupta V, Bilello M, Beauchamp NJ, Nowinski WL: Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad Radiol 2006, 13:1474-1484.
60.Hevia-Montiel N, Jimenez-Alaniz JR, Medina-Banuelos V, Yanez-Suarez O, Rosso C, Samson Y, Baillet S: Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. Conf Proc IEEE Eng Med Biol Soc 2007, 2007:2102-2105.
61.Gupta V, Prakash B, Nowinski WL: Automatic and rapid identification of infarct slices and hemisphere in DWI scans. Acad Radiol 2008, 15:24-39.
62.Shen S, Szameitat AJ, Sterr A: Detection of infarct lesions from single MRI modality using inconsistency between voxel intensity and spatial location--a 3-D automatic approach. IEEE Trans Inf Technol Biomed 2008, 12:532-540.
63.Briley DP, Haroon S, Sergent SM, Thomas S: Does leukoaraiosis predict morbidity and mortality? Neurology 2000, 54:90-94.
64.Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM, Rotterdam Scan Study: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 2003, 34:1126-1129.
65.Fu JH, Lu CZ, Hong Z, Dong Q, Luo Y, Wong KS: Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke. J Neurol Neurosurg Psychiatry 2005, 76:793-796.
66.Janssen J, Hulshoff Pol HE, Schnack HG, Kok RM, Lampe IK, de Leeuw FE, Kahn RS, Heeren TJ: Cerebral volume measurements and subcortical white matter lesions and short-term treatment response in late life depression. Int J Geriatr Psychiatry 2007, 22:468-474.
67.Figiel GS, Krishnan KR, Doraiswamy PM, Rao VP, Nemeroff CB, Boyko OB: Subcortical hyperintensities on brain magnetic resonance imaging: a comparison between late age onset and early onset elderly depressed subjects. Neurobiol Aging 1991, 12:245-247.
68.Harrell LE, Duvall E, Folks DG, Duke L, Bartolucci A, Conboy T, Callaway R, Kerns D: The relationship of high-intensity signals on magnetic resonance images to cognitive and psychiatric state in Alzheimer′s disease. Arch Neurol 1991, 48:1136-1140.
69.Krishnan KR, McDonald WM, Doraiswamy PM, Tupler LA, Husain M, Boyko OB, Figiel GS, Ellinwood EH,Jr: Neuroanatomical substrates of depression in the elderly. Eur Arch Psychiatry Clin Neurosci 1993, 243:41-46.
70.Hirono N, Kitagaki H, Kazui H, Hashimoto M, Mori E: Impact of white matter changes on clinical manifestation of Alzheimer′s disease: A quantitative study. Stroke 2000, 31:2182-2188.
71.Jack CR,Jr, O′Brien PC, Rettman DW, Shiung MM, Xu Y, Muthupillai R, Manduca A, Avula R, Erickson BJ: FLAIR histogram segmentation for measurement of leukoaraiosis volume. J Magn Reson Imaging 2001, 14:668-676.
72.Wen W, Sachdev P: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 2004, 22:144-154.
73.de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ: White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 2009, 45:1151-1161.
74.Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage 2008, 41:1253-1266.
75.Wilke M, de Haan B, Juenger H, Karnath HO: Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 2011, 56:2038-2046.
76.Crinion J, Ashburner J, Leff A, Brett M, Price C, Friston K: Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage 2007, 37:866-875.
77.Andersen SM, Rapcsak SZ, Beeson PM: Cost function masking during normalization of brains with focal lesions: still a necessity? Neuroimage 2010, 53:78-84.
78.Ripolles P, Marco-Pallares J, de Diego-Balaguer R, Miro J, Falip M, Juncadella M, Rubio F, Rodriguez-Fornells A: Analysis of automated methods for spatial normalization of lesioned brains. Neuroimage 2012, 60:1296-1306.
79.Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J: Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 2004, 21:1037-1044.
80.Dyrby TB, Rostrup E, Baare WF, van Straaten EC, Barkhof F, Vrenken H, Ropele S, Schmidt R, Erkinjuntti T, Wahlund LO, Pantoni L, Inzitari D, Paulson OB, Hansen LK, Waldemar G, LADIS study group: Segmentation of age-related white matter changes in a clinical multi-center study. Neuroimage 2008, 41:335-345.
81.Kruggel F, Paul JS, Gertz HJ: Texture-based segmentation of diffuse lesions of the brain′s white matter. Neuroimage 2008, 39:987-996.
82.Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C: Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol 2008, 15:300-313.
83.Kloppel S, Abdulkadir A, Hadjidemetriou S, Issleib S, Frings L, Thanh TN, Mader I, Teipel SJ, Hull M, Ronneberger O: A comparison of different automated methods for the detection of white matter lesions in MRI data. Neuroimage 2011, 57:416-422.
84.Benson RR, Guttmann CR, Wei X, Warfield SK, Hall C, Schmidt JA, Kikinis R, Wolfson LI: Older people with impaired mobility have specific loci of periventricular abnormality on MRI. Neurology 2002, 58:48-55.
85.Wu M, Rosano C, Butters M, Whyte E, Nable M, Crooks R, Meltzer CC, Reynolds CF,3rd, Aizenstein HJ: A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res 2006, 148:133-142.
86.Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der Grond J, van Buchem MA, Reiber JH: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 2005, 28:607-617.
87.Yang F, Shan ZY, Kruggel F: White matter lesion segmentation based on feature joint occurrence probability and random field theory from magnetic resonance (MR) images. Pattern Recog Lett 2010, 31:781.
88.Duncan JS: Imaging and epilepsy. Brain 1997, 120:339-377.
89.Krakow K, Wieshmann UC, Woermann FG, Symms MR, McLean MA, Lemieux L, Allen PJ, Barker GJ, Fish DR, Duncan JS: Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization-related epilepsy. Epilepsia 1999, 40:1459-1462.
90.Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 2001, 124:617-626.
91.Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31:1487-1505.
92.Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS: Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 2001, 124:627-636.
93.Thivard L, Adam C, Hasboun D, Clemenceau S, Dezamis E, Lehericy S, Dormont D, Chiras J, Baulac M, Dupont S: Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain 2006, 129:375-385.
94.Chen Q, Lui S, Li CX, Jiang LJ, Ou-Yang L, Tang HH, Shang HF, Huang XQ, Gong QY, Zhou D: MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI. Epilepsy Res 2008, 80:83-89.
95.Widjaja E, Skocic J, Go C, Snead OC, Mabbott D, Smith ML: Abnormal white matter correlates with neuropsychological impairment in children with localization-related epilepsy. Epilepsia 2013, 54:1065-1073.
96.Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Chen CZ, Cheng WZ, Wang H, Fan W, Wang X: Disease duration and arcuate fasciculus abnormalities correlate with psychoticism in patients with epilepsy. Seizure 2011, 20:741-747.
97.Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME: Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002, 20:511-519.
98.Riley JD, Franklin DL, Choi V, Kim RC, Binder DK, Cramer SC, Lin JJ: Altered white matter integrity in temporal lobe epilepsy: association with cognitive and clinical profiles. Epilepsia 2010, 51:536-545.
99.Lin JJ, Riley JD, Juranek J, Cramer SC: Vulnerability of the frontal-temporal connections in temporal lobe epilepsy. Epilepsy Res 2008, 82:162-170.
100.Govindan RM, Makki MI, Sundaram SK, Juhasz C, Chugani HT: Diffusion tensor analysis of temporal and extra-temporal lobe tracts in temporal lobe epilepsy. Epilepsy Res 2008, 80:30-41.
101.Thivard L, Lehericy S, Krainik A, Adam C, Dormont D, Chiras J, Baulac M, Dupont S: Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 2005, 28:682-690.
102.Forsgren L, Bucht G, Eriksson S, Bergmark L: Incidence and clinical characterization of unprovoked seizures in adults: a prospective population-based study. Epilepsia 1996, 37:224-229.
103.Norden AD, Blumenfeld H: The role of subcortical structures in human epilepsy. Epilepsy Behav 2002, 3:219-231.
104.Gale K: Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol 1992, 9:264-277.
105.DeCarli C, Hatta J, Fazilat S, Fazilat S, Gaillard WD, Theodore WH: Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol 1998, 43:41-45.
106.Szabo CA, Lancaster JL, Lee S, Xiong JH, Cook C, Mayes BN, Fox PT: MR imaging volumetry of subcortical structures and cerebellar hemispheres in temporal lobe epilepsy. AJNR Am J Neuroradiol 2006, 27:2155-2160.
107.Keller SS, Ahrens T, Mohammadi S, Moddel G, Kugel H, Ringelstein EB, Deppe M: Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy. Epilepsia 2011, 52:1715-1724.
108.Keller SS, Schoene-Bake JC, Gerdes JS, Weber B, Deppe M: Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury. PLoS One 2012, 7:e46791.
109.McDonald CR, Hagler DJ,Jr, Ahmadi ME, Tecoma E, Iragui V, Dale AM, Halgren E: Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation. Epilepsy Res 2008, 79:130-138.
110.Pulsipher DT, Seidenberg M, Morton JJ, Geary E, Parrish J, Hermann B: MRI volume loss of subcortical structures in unilateral temporal lobe epilepsy. Epilepsy Behav 2007, 11:442-449.
111.Dreifuss S, Vingerhoets FJ, Lazeyras F, Andino SG, Spinelli L, Delavelle J, Seeck M: Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology 2001, 57:1636-1641.
112.Dabbs K, Becker T, Jones J, Rutecki P, Seidenberg M, Hermann B: Brain structure and aging in chronic temporal lobe epilepsy. Epilepsia 2012, 53:1033-1043.
113.Saini J, Sinha S, Bagepally BS, Ramchandraiah CT, Thennarasu K, Prasad C, Taly AB, Satishchandra P: Subcortical structural abnormalities in juvenile myoclonic epilepsy (JME): MR volumetry and vertex based analysis. Seizure 2013, 22:230-235.
114.Luo C, Xia Y, Li Q, Xue K, Lai Y, Gong Q, Zhou D, Yao D: Diffusion and volumetry abnormalities in subcortical nuclei of patients with absence seizures. Epilepsia 2011, 52:1092-1099.
115.Du H, Zhang Y, Xie B, Wu N, Wu G, Wang J, Jiang T, Feng H: Regional atrophy of the basal ganglia and thalamus in idiopathic generalized epilepsy. J Magn Reson Imaging 2011, 33:817-821.
116.Kim JH, Lee JK, Koh SB, Lee SA, Lee JM, Kim SI, Kang JK: Regional grey matter abnormalities in juvenile myoclonic epilepsy: a voxel-based morphometry study. Neuroimage 2007, 37:1132-1137.
117.Chan CH, Briellmann RS, Pell GS, Scheffer IE, Abbott DF, Jackson GD: Thalamic atrophy in childhood absence epilepsy. Epilepsia 2006, 47:399-405.
118.Yang T, Guo Z, Luo C, Li Q, Yan B, Liu L, Gong Q, Yao D, Zhou D: White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive childhood absence epilepsy. Epilepsy Res 2012, 99:267-273.
119.Groppa S, Moeller F, Siebner H, Wolff S, Riedel C, Deuschl G, Stephani U, Siniatchkin M: White matter microstructural changes of thalamocortical networks in photosensitivity and idiopathic generalized epilepsy. Epilepsia 2012, 53:668-676.
120.Kim JH, Kim JB, Seo WK, Suh SI, Koh SB: Volumetric and shape analysis of thalamus in idiopathic generalized epilepsy. J Neurol 2013, 260:1846-1854.
121.Kimiwada T, Juhasz C, Makki M, Muzik O, Chugani DC, Asano E, Chugani HT: Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 2006, 47:167-175.
122.Gärtner B, Seeck M, Michel CM, Delavelle J, Lazeyras F: Patients with extratemporal lobe epilepsy do not differ from healthy subjects with respect to subcortical volumes. J Neurol Neurosurg Psychiatry 2004, 75:588-592.
123.Hermann BP, Dabbs K, Becker T, Jones JE, Myers y Gutierrez A, Wendt G, Koehn MA, Sheth R, Seidenberg M: Brain development in children with new onset epilepsy: a prospective controlled cohort investigation. Epilepsia 2010, 51:2038-2046.
124.Tosun D, Dabbs K, Caplan R, Siddarth P, Toga A, Seidenberg M, Hermann B: Deformation-based morphometry of prospective neurodevelopmental changes in new onset paediatric epilepsy. Brain 2011, 134:1003-1014.
125.Smith SC,Jr: Reducing the global burden of ischemic heart disease and stroke: a challenge for the cardiovascular community and the United Nations. Circulation 2011, 124:278-279.
126.Bezdek JC: Pattern Recognition with Fuzzy Objective Function Algorithms: Norwell, MA, USA: Kluwer Academic Publishers; 1981.
127.Hsieh FI, Lien LM, Chen ST, Bai CH, Sun MC, Tseng HP, Chen YW, Chen CH, Jeng JS, Tsai SY, Lin HJ, Liu CH, Lo YK, Chen HJ, Chiu HC, Lai ML, Lin RT, Sun MH, Yip BS, Chiou HY, Hsu CY, Taiwan Stroke Registry Investigators: Get With the Guidelines-Stroke performance indicators: surveillance of stroke care in the Taiwan Stroke Registry: Get With the Guidelines-Stroke in Taiwan. Circulation 2010, 122:1116-1123.
128.Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997, 16:187-198.
129.Smith SM: Fast robust automated brain extraction. Hum Brain Mapp 2002, 17:143-155.
130.Canny J: A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986, 8:679-698.
131.Chen YW, Gurol ME, Rosand J, Viswanathan A, Rakich SM, Groover TR, Greenberg SM, Smith EE: Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 2006, 67:83-87
132.Chang HH, Zhuang AH, Valentino DJ, Chu WC: Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 2009, 47:122-135.
133.Dice LR: Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26:297-302.
134.Steen RG, Emudianughe T, Hunte M, Glass J, Wu S, Xiong X, Reddick WE: Brain volume in pediatric patients with sickle cell disease: evidence of volumetric growth delay? AJNR Am J Neuroradiol 2005, 26:455-462.
135.McGraw KO, Wong SP: Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996, 1:30-46.
136.Schoonheim MM, Vigeveno RM, Lopes FC, Pouwels PJ, Polman CH, Barkhof F, Geurts JJ: Sex-specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline. Hum Brain Mapp 2014, 35:2348-2358.
137.Weinstein G, Beiser AS, Decarli C, Au R, Wolf PA, Seshadri S: Brain imaging and cognitive predictors of stroke and Alzheimer disease in the Framingham Heart Study. Stroke 2013, 44:2787-2794.
138.Poels MM, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, Witteman JC, Breteler MM, Mattace-Raso FU, Ikram MA: Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke 2012, 43:2637-2642.
139.Smith EE, Gurol ME, Eng JA, Engel CR, Nguyen TN, Rosand J, Greenberg SM: White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology 2004, 63:1606-1612.
140.Altaf N, Morgan PS, Moody A, MacSweeney ST, Gladman JR, Auer DP: Brain white matter hyperintensities are associated with carotid intraplaque hemorrhage. Radiology 2008, 248:202-209.
141.Schmahmann JD, Smith EE, Eichler FS, Filley CM: Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008, 1142:266-309.
142.Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P, European Task Force on Age-Related White Matter Changes: A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001, 32:1318-1322.
143.Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O′Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge R, Pantoni L, Speck O, Stephan BC, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M, STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1): Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013, 12:822-838.
144.Debette S, Markus HS: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010, 341:c3666.
145.Schulz UG, Gruter BE, Briley D, Rothwell PM: Leukoaraiosis and increased cerebral susceptibility to ischemia: lack of confounding by carotid disease. J Am Heart Assoc 2013, 2:e000261.
146.Longstreth WT,Jr, Arnold AM, Beauchamp NJ,Jr, Manolio TA, Lefkowitz D, Jungreis C, Hirsch CH, O′Leary DH, Furberg CD: Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 2005, 36:56-61.
147.Smith EE: Leukoaraiosis and stroke. Stroke 2010, 41:S139-43.
148.Pantoni L, Simoni M, Pracucci G, Schmidt R, Barkhof F, Inzitari D: Visual rating scales for age-related white matter changes (leukoaraiosis): can the heterogeneity be reduced? Stroke 2002, 33:2827-2833.
149.van Straaten EC, Fazekas F, Rostrup E, Scheltens P, Schmidt R, Pantoni L, Inzitari D, Waldemar G, Erkinjuntti T, Mantyla R, Wahlund LO, Barkhof F, LADIS Group: Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 2006, 37:836-840.
150.Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J: Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med Image Anal 2004, 8:205-215.
151.Anbeek P, Vincken KL, van Bochove GS, van Osch MJ, van der Grond J: Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 2005, 27:795-804.
152.Beare R, Srikanth V, Chen J, Phan TG, Stapleton J, Lipshut R, Reutens D: Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities. Neuroimage 2009, 47:199-203.
153.Gouw AA, van der Flier WM, van Straaten EC, Pantoni L, Bastos-Leite AJ, Inzitari D, Erkinjuntti T, Wahlund LO, Ryberg C, Schmidt R, Fazekas F, Scheltens P, Barkhof F, LADIS study group: Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc Dis 2008, 25:247-253.
154.Shi L, Wang D, Liu S, Pu Y, Wang Y, Chu WC, Ahuja AT, Wang Y: Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction. J Neurosci Methods 2013, 213:138-146.
155.Gurol ME, Irizarry MC, Smith EE, Raju S, Diaz-Arrastia R, Bottiglieri T, Rosand J, Growdon JH, Greenberg SM: Plasma beta-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy. Neurology 2006, 66:23-29.
156.Ashburner J: A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38:95-113.
157.Huppertz HJ, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A, Spreer J, Schulze-Bonhage A: Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res 2005, 67:35-50.
158.Huppertz HJ, Wellmer J, Staack AM, Altenmuller DM, Urbach H, Kroll J: Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia 2008, 49:772-785.
159.Tsai JZ, Peng SJ, Chen YW, Wang KW, Wu HK, Lin YY, Lee YY, Chen CJ, Lin HJ, Smith EE, Yeh PS, Hsin YL: Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map. Biomed Res Int 2014, 2014:963032.
160.Bland JM, Altman DG: Measuring agreement in method comparison studies. Stat Methods Med Res 1999, 8:135-160.
161.Bartko JJ: Measurement and reliability: statistical thinking considerations. Schizophr Bull 1991, 17:483-489.
162.Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 1994, 13:716-724.
163.Alexander AL, Lee JE, Lazar M, Field AS: Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4:316-329.
164.Liu M, Concha L, Beaulieu C, Gross DW: Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes. Epilepsia 2011, 52:2267-2275.
165.Deppe M, Kellinghaus C, Duning T, Moddel G, Mohammadi S, Deppe K, Schiffbauer H, Kugel H, Keller SS, Ringelstein EB, Knecht S: Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy. Neurology 2008, 71:1981-1985.
166.Gross DW: Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 2011, 52 Suppl 4:32-34.
167.Lee SK, Kim DI, Mori S, Kim J, Kim HD, Heo K, Lee BI: Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 2004, 22:1826-1829.
168.Widjaja E, Blaser S, Miller E, Kassner A, Shannon P, Chuang SH, Snead OC,3rd, Raybaud CR: Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 2007, 48:1460-1469.
169.Okonma SV, Blount JP, Gross RE: Planning extent of resection in epilepsy: limited versus large resections. Epilepsy Behav 2011, 20:233-240.
170.Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer′s disease participants. Neuroimage 2009, 46:486-499.
171.Oishi K, Faria A, Mori S: JHU-MNI-ss Atlas. 2010.
172.Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46:786-802.
173.Bertram EH: Neuronal circuits in epilepsy: do they matter? Exp Neurol 2013, 244:67-74.
174.Berman R, Negishi M, Vestal M, Spann M, Chung MH, Bai X, Purcaro M, Motelow JE, Danielson N, Dix-Cooper L, Enev M, Novotny EJ, Constable RT, Blumenfeld H: Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia 2010, 51:2011-2022.
175.Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001, 14:21-36.
176.Smith SM, Nichols TE: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009, 44:83-98.
177.Nichols TE, Holmes AP: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002, 15:1-25.
178.Patenaude B: Bayesian Statistical Models of Shape and Appearance for Subcortical Brain Segmentation: University of Oxford; 2007.
179.Patenaude B, Smith SM, Kennedy DN, Jenkinson M: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011, 56:907-922.

指導教授 蔡章仁、辛裕隆、羅孟宗
(Jang-Zern Tsai、Yue-Loong Hsin、Men-tzung Lo)
審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明