博碩士論文 985402013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.116.52.117
姓名 吳牧哲(Mu-Che Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 CellS: 一個細胞啟發的高效軟體框架及其在對話系統開發上之應用
(CellS: A Cell-inspired Efficient Software Framework And Its Application On Dialog System Development)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 軟體整合是軟體工程中重要且困難的議題。在本研究中,我們受到細胞學說的啟發,實現了CellS軟體框架用以解決軟體整合議題。軟體之困難處在於單獨的模組雖可執行,但是不能保證整合後仍可執行。在CellS中,軟體的最小單位是細胞,完成所有細胞的單元測試,即完成軟體的整合。另一方面,傳統的軟體無法發揮CPU的運算能力,其主因是平行化的程式佔總程式的百分比很低。CellS軟體架構可提高軟體的平行化,且工程師無須自己寫平行化程式,因為框架本身即為一個平行架構。本研究使用CellS實作對話引擎,並應用於導航系統與機器手臂控制。以對話為基礎的設計使得導航系統與機器手臂控制取得易用性的優勢,而以CellS為基礎的設計使得導航系統與機器手臂控制取得維護性的優勢。性能實驗表明,我們的應用可以提升高達1.94倍的加速,且隨著CPU的核心數增加,應用得到顯著的加速。本研究設計的CellS軟體框架具有持續演化的能力,且該軟體框架特別適用於需要自主地處理感知器產生的訊息,並且能快速回應的軟體應用。

摘要(英) Software integration is an important and difficult issue in software engineering. In this study, we were inspired by cell theory and implemented the CellS software framework to address software integration issues. The difficulty in software integration is that the individual modules are executable, but they are not guaranteed to be executable after integration. In CellS, the smallest unit of software is the cell, and when all the cells pass its unit test, the integration of the software is completed. On the other hand, traditional software cannot leverage completely the computing power of the CPU, and the root cause is that the parallelized program accounts for a very low percentage of the total program. The CellS software architecture improves software parallelism, and engineers do not have to write parallelism program because the framework itself is a parallel architecture. This study uses the CellS implementation the dialogue engine and is applied to navigation systems and robotic arm control. The dialogue-based design gives the navigation system and robotic arm control the advantage of usability; the CellS-based design gives the navigation system and robotic arm control the advantage of maintainability. Performance experiments show that our application can increase speedup to 1.94 times, and with the increase in the number of cores of the CPU, the application is significantly speedup. The CellS software framework designed in this study has the ability to continuously evolve, and this framework is especially suitable for software applications that need to autonomously process the information generated by the sensor and respond quickly.
關鍵字(中) ★ 軟體工程
★ 軟體效能
★ 對話系統
關鍵字(英)
論文目次 ABSTRACT ii
Chapter 1 Introduction 1
Chapter 2 Related Work 6
Chapter 3 Architecture 10
3.1. Improve the Efficiency of Multi-Core CPUs 11
3.2. Endow the Capability to Refactor Software Flow 13
3.3. Establish the Software Integration Framework for the
Application with Perceived Capabilities 15
Chapter 4 Design 17
4.1. Principle of Design 17
4.2. Component Design 23
4.3. Life Cycle Design 30
Chapter 5 Comparison, Experiment, and Analysis 36
5.1. Comparison of Framework 36
5.2. Performance Experiment 41
5.3. Time Analysis 49
Chapter 6 Application 51
6.1. Dialog Engine 53
6.2. Navigation Application (CDNA) 75
6.3. Robotic Arm Control Application (AC) 92
Chapter 7 Conclusion 106
References 108
參考文獻 1. Luo, H., Yang, Y., Tong, B., Wu, F., & Fan, B. (2018). Traffic sign recognition using a multi-task convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1100-1111.
2. Ding, C., & Tao, D. (2018). Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE transactions on pattern analysis and machine intelligence, 40(4), 1002-1014.
3. Wu, B. F., & Lin, C. H. (2018). Adaptive Feature Mapping for Customizing Deep Learning Based Facial Expression Recognition Model. IEEE Access, 6, 12451-12461.
4. Guo, J., Lei, Z., Wan, J., Avots, E., Hajarolasvadi, N., Knyazev, B., & Escalera, S. (2018). Dominant and Complementary Emotion Recognition from Still Images of Faces. IEEE Access, 6, 26391-26403.
5. Zhao, Y., Wang, Z. Q., & Wang, D. (2019). Two-Stage Deep Learning for Noisy-Reverberant Speech Enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1), 53-62.
6. Sahraeian, R., & Van Compernolle, D. (2017). Crosslingual and Multilingual Speech Recognition Based on the Speech Manifold. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(12), 2301-2312.
7. Zheng, N., & Zhang, X. L. (2019). Phase-Aware Speech Enhancement Based on Deep Neural Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1), 63-76.
8. Deng, J., Xu, X., Zhang, Z., Fruhholz, S., Schuller, B., Deng, J., & Schuller, B. (2018). Semisupervised autoencoders for speech emotion recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 26(1), 31-43.
9. Zhang, M., Yu, N., & Fu, G. (2018). A Simple and Effective Neural Model for Joint Word Segmentation and POS Tagging. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 26(9), 1528-1538.
10. Wei, X., Huang, H., Nie, L., Zhang, H., Mao, X. L., & Chua, T. S. (2017). I know what you want to express: sentence element inference by incorporating external knowledge base. IEEE Transactions on Knowledge and Data Engineering, 29(2), 344-358.
11. Zhang, B., Xiong, D., Su, J., & Duan, H. (2017). A Context-Aware Recurrent Encoder for Neural Machine Translation. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 25(12), 2424-2432.
12. Dethlefs, N. (2017). Domain Transfer for Deep Natural Language Generation from Abstract Meaning Representations. IEEE Computational Intelligence Magazine, 12(3), 18-28.
13. Liu, M., Rus, V., & Liu, L. (2017). Automatic Chinese factual question generation. IEEE Transactions on Learning Technologies, 10(2), 194-204.
14. Korpusik, M., & Glass, J. (2017). Spoken language understanding for a nutrition dialogue system. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(7), 1450-1461.
15. Agarwal, A., Baechle, C., Behara, R., & Zhu, X. (2018). A Natural language processing framework for assessing hospital readmissions for patients with COPD. IEEE journal of biomedical and health informatics, 22(2), 588-596.
16. Dickmanns, E. D. (2017). Developing the Sense of Vision for Autonomous Road Vehicles at UniBwM. Computer, 50(12), 24-31.
17. Hanna, M. J., & Kimmel, S. C. (2017). Current US federal policy framework for self-driving vehicles: opportunities and challenges. Computer, 50(12), 32-40.
18. Guo, Y., Jiao, L., Wang, S., Wang, S., & Liu, F. (2018). Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition. IEEE transactions on cybernetics, 48(8), 2402-2415.
19. Loquercio, A., Maqueda, A. I., del-Blanco, C. R., & Scaramuzza, D. (2018). Dronet: Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2), 1088-1095.
20. Fan, S., Ng, T. T., Koenig, B. L., Herberg, J. S., Jiang, M., Shen, Z., & Zhao, Q. (2018). Image visual realism: From human perception to machine computation. IEEE transactions on pattern analysis and machine intelligence, 40(9), 2180-2193.
21. Michaud, L. N. (2018). Observations of a New Chatbot: Drawing Conclusions from Early Interactions with Users. IT Professional, 20(5), 40-47.
22. Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., & Wu, F. (2014). A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573-576.
23. Yan, C., Zhang, Y., Xu, J., Dai, F., Zhang, J., Dai, Q., & Wu, F. (2014). Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology, 24(12), 2077-2089.
24. Msegosa, A. R., Martinez, A. M., & Borchani, H. (2016). Probabilistic graphical models on multi-core CPUs using Java 8. IEEE Computational Intelligence Magazine, 11(2), 41-54.
25. Hou, N., He, F., Zhou, Y., Chen, Y., & Yan, X. (2018). A parallel genetic algorithm with dispersion correction for HW/SW partitioning on multi-core CPU and many-core GPU. IEEE Access, 6, 883-898.
26. Hewitt, C., Bishop, P., & Steiger, R. (1973). Session 8 formalisms for artificial intelligence universal modular actor formalism for artificial intelligence. In Advance Papers of the Conference (Vol. 3, p. 235). Stanford Research Institute.
27. Bauer, D. A., & Mäkiö, J. Actor4j: A Software Framework for the Actor Model Focusing on the Optimization of Message Passing.
28. Bordini, R. H., &Hübner, J. F. (2004).Jason–a java-based agentspeak interpreter used with saci for multi-agent distribution over the net.On-line at http://jason.sourceforge.net.
29. Braubach, L., Lamersdorf, W., &Pokahr, A. (2003).Jadex: Implementing a BDI-infrastructure for JADE agents.
30. Nunes, I., Lucena, C. J. P. D., & Luck, M. (2011). BDI4JADE: a BDI layer on top of JADE. ProMAS 2011, 88-103.
31. Levitan, I. B., & Kaczmarek, L. K. (2002). The cell: cell and molecular biology. Oxford University Press, USA.
32. Lee, J., Huber, M. J., Durfee, E. H., & Kenny, P. G. (1994a). UM-PRS: An implementation of the procedural reasoning system for multirobot applications.
33. Wilkins, K. L. M. D. E., & Myers, M. (1997).The Act Formalism.SRI International Artificial Intelligence Center.
34. Wilkins, D. E., & Myers, K. L. (1995). A common knowledge representation for plan generation and reactive execution. Journal of Logic and Computation, 5(6), 731-761.
35. Lee, J., &Durfee, E. H. (1994b).Structured circuit semantics for reactive plan execution systems.Ann Arbor, 1001, 48109.
36. Bellifemine, F., Poggi, A., &Rimassa, G. (1999, April).JADE–A FIPA-compliant agent framework.In Proceedings of PAAM (Vol. 99, No. 97-108, p. 33).
37. Braubach, L., Lamersdorf, W., &Pokahr, A. (2003). Jadex: Implementing a BDI-infrastructure for JADE agents.
38. Paulussen, T. O., Jennings, N. R., Decker, K. S., &Heinzl, A. (2003).Distributed patient scheduling in hospitals.
39. Bordini, R. H., &Hübner, J. F. (2004).Jason–a java-based agentspeak interpreter used with saci for multi-agent distribution over the net.On-line at http://jason.sourceforge.net.
40. Nunes, I., Lucena, C. J. P. D., & Luck, M. (2011). BDI4JADE: a BDI layer on top of JADE. ProMAS 2011, 88-103.
41. Ching-Han Chen, Ming-Yi Lin, Xing-Chen Guo, "High-level Modeling and Synthesis of Smart Sensor Networks for Industrial Internet of Things", Computers & Electrical Engineering, Vol.61, July 2017, pp.48–66 .
42. S. Koceski and N. Koceska, "Evaluation of an assistive telepresence robot for elderly healthcare," J. Med. Syst., vol. 40, no. 5, p. 121, May 2016.
43. M. Mast et al., "Design of the human-robot interaction for a semiautonomous service robot to assist elderly people," in Ambient Assisted Living, R. Wichert and H. Klausing, Eds. Cham, Switzerland: Springer, 2015, pp. 15–29.
44. E. Sato-Shimokawara, S. Nomura, Y. Shinoda, H. Lee, T. Takatani, K. Wada, and T. Yamaguchi, "A cloud based chat robot using dialogue histories for elderly people," 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2015.
45. C. Jayawardena, I. Kuo, E. Broadbent, and B. A. MacDonald, "Socially assistive robot healthbot: design, implementation, and field trials," IEEE Syst. J., vol. 10, no. 3, pp. 1056–1067, Sep. 2016.
46. H. M. Gross et al., "ROREAS: robot coach for walking and orientation training in clinical post-stroke rehabilitation—prototype implementation and evaluation in field trials," Auton. Robot, vol. 41, no. 3, pp. 679–698, Mar. 2017.
47. A. Tapus, C. Ţăpuş, and M. J. Matarić, "User—robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy," Intell. Service Robot, vol. 1, no. 2, p. 169, Apr. 2008.
48. K. Swift-Spong, E. Short, E. Wade, and M. J. Matarić, "Effects of comparative feedback from a Socially Assistive Robot on self-efficacy in post-stroke rehabilitation," in IEEE Int. Conf. Rehabil. Robot. (ICORR), Singapore: IEEE, 2015, pp. 764–769.
49. R. Liu and X. Zhang, "Fuzzy context-specific intention inference for robotic caregiving," Int. J. Advanced Robot. Syst., vol. 13, no. 5, pp. 1–14, Oct. 2016.
50. K. Gerling, D. Hebesberger, C. Dondrup, T. Kortner, and M. Hanheide, "Robot deployment in long-term care," Zeitschrift für Gerontologie und Geriatrie, vol. 49, no. 4, pp. 288–297, Jun. 2016.
51. Y. Zhang, Y. Hu, P. Zhang, and W. X. Zhang, "Development of personal assistant system with human computer interaction," Int. J. Recent Trends Human Comput. Interaction (IJHCI), vol. 5, no. 3, pp. 40–50 Jul/Aug 2014.
52. E. Clotet, D. Martinez, J. Moreno, M. Tresanchez, and J. Palacin, "Assistant Personal Robot (APR): conception and application of a tele-operated assisted living robot," Sensors (Basel), vol. 16, no. 5, p. 610, Apr. 2016.
53. N. Reich-Stiebert and F. Eyssel, "Learning with educational companion robots? Toward attitudes on education robots, predictors of attitudes, and application potentials for education robots," Int. J. Social Robot., vol. 7, no. 5, pp. 875–888, Nov. 2015.
54. A. Causo, G. T. Vol, I. M. Chen, and S. H. Yeo, "Design of robots used as education companion and tutor," in Robotics and Mechatronics, Cham, Switzerland: Springer, 2016, pp. 75–84.
55. I. Aaltonen, A. Arvola, P. Heikkilä, and H. Lammi, "Hello pepper, May I tickle you? Children’s and adults’ responses to an entertainment robot at a shopping mall," in Proc. Companion 2017 ACM/IEEE Int. Conf. Human-Robot Interaction, Vienna, Austria, 2017, pp. 53–54.
56. M. E. Foster et al., "The MuMMER project: engaging human-robot interaction in real-world public spaces," in ICSR 2016. LNCS (LNAI), vol. 9979, A. Agah, J. J. Cabibihan, A. M. Howard, M. A. Salichs, H. He, Eds. Cham: Springer, 2016, pp. 753–763.
57. Y. Kim and W. C. Yoon, "Generating task-oriented interactions of service robots," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8, pp. 981–994, Aug. 2014.
58. S. Schiffer, A. Ferrein, and G. Lakemeyer, "CAESAR: an intelligent domestic service robot," Intell. Service Robot, vol. 5, no. 4, pp. 259–273, Oct. 2012.
59. H. S. Wang, J. Ren, and X. Li, "Natural spoken instructions understanding for rescue robot navigation based on cascaded Conditional Random Fields," in 9th Int. Conf. Human Syst. Interactions (HSI), Portsmouth, UK, 2016, pp. 216–222.
60. T. Kusu, Y. Ito, T. Kida, T. Shimada, M. Takahashi, Y. Nomoto, Y. Tsuchiya, M. Narita, and Y. Kato, "A Virtual Campus Tour Service Using Remote Control Robots on Robot Service Network Protocol," 2013 27th International Conference on Advanced Information Networking and Applications Workshops, 2013.
61. A. S. Rao and M. P. Georgeff, "Modeling rational agents within a BDI-architecture." Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, 1991.
62. M. C. Wu and C. H. Chen, "CellS: A cell-inspired efficient software framework for Intelligent System." 2018 IEEE International Conference on Consumer Electronics-Taiwan (IEEE 2018 ICCE-TW), 2018.
63. N. Davari and A. Gholami, "An Asynchronous Adaptive Direct Kalman Filter Algorithm to Improve Underwater Navigation System Performance,"IEEE Sensors Journal, vol. 17, no. 4, pp. 1061–1068, 2017.
64. W. Jiang, Y. Li, and C. Rizos, "A Multisensor Navigation System Based on an Adaptive Fault-Tolerant GOF Algorithm,"IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp. 103–113, 2017.
65. Q. Zeng, J. Wang, Q. Meng, X. Zhang, and S. Zeng, "Seamless Pedestrian Navigation Methodology Optimized for Indoor/Outdoor Detection," IEEE Sensors Journal, vol. 18, no. 1, pp. 363–374, Jan. 2018.
66. U. Rehman and S. Cao, "Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices versus Google Glass," IEEE Transactions on Human-Machine Systems, pp. 1–12, 2016.
67. H. Ju, S. Y. Park, and C. G. Park, "A Smartphone-Based Pedestrian Dead Reckoning System with Multiple Virtual Tracking for Indoor Navigation," IEEE Sensors Journal, vol. 18, no. 16, pp. 6756–6764, 2018.
68. E. Fresk, G. Nikolakopoulos, and T. Gustafsson, "A Generalized Reduced-Complexity Inertial Navigation System for Unmanned Aerial Vehicles," IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 192–207, 2017.
69. H. Mahmoudi and M. M. Homayounpour, "A Persian spoken dialogue system using POMDPs," 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), 2015.
70. S. Ondas and J. Juhar, "Towards human-machine dialog in Slovak," 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), 2016.
71. E. Seto and N. Kitaoka, "User adaptation of input-response pairs in an example-based dialog system using distributed representation of words," 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 2017.
72. D. Ramachandran, P. Z. Yeh, W. Jarrold, B. Douglas, A. Ratnaparkhi, R. Provine, J. Mendel, and A. Emfield, "An end-to-end dialog system for TV program discovery," 2014 IEEE Spoken Language Technology Workshop (SLT), 2014.
73. D. Chen and C. Manning, "A fast and accurate dependency parser using neural networks," in Proc. 2014 Conf. Empirical Methods Natural Language Process. (EMNLP), Doha, Qatar: Association for Computational Linguistics, 2014, pp. 740–750.
74. M. Hadley and P. Sandoz. (2009, September). JSR 311: JAX-RS: The JavaTM API for RESTful Web Services. Available: http://jcp.org/en/jsr/detail?id=311.
75. M. Hadley, S. Pericas-Geertsen, and P. Sandoz, "Exploring hypermedia support in Jersey," presented at the Proc. First Int. Workshop on RESTful Des, Raleigh, North Carolina, USA, 2010.
76. IBM. (2007). IBM introduces ready-to-use cloud computing. Available: https://www-03.ibm.com/press/us/en/pressrelease/22613.
77. J. Bort. (2017). Amazon′s Massive Cloud Business Hit Over $12 Billion in Revenue and $3 Billion in Profit in 2016. Available: http://www.businessinsider.com/amazons-cloud-businesshits-over-12-billion-in-revenue-2017-2, 2017.
78. M. Rosoff. (2015). Microsoft Vows to have $20 Billion Incloud Revenue by 2018. Available: http://www.businessinsider.com/microsoft-20-billion-cloud-revenue-and-1-billion-windows-10-pcs-by-2018-2015-4/?IR=T#iz25lv5lyAbEVkd3.97.
79. A. Koubaa and B. Qureshi, "DroneTrack: cloud-based real-time object tracking using unmanned aerial vehicles over the internet," IEEE Access, vol. 6, pp. 13810–13824, Mar. 2018.
80. J. J. Kuffner, "Cloud-enabled robots," in Proc. IEEE-RAS Int. Conf. Humanoid Robot, Nashville, TN, USA, 2010, pp. 176–181.
81. H. Liu and P. Singh, "ConceptNet — a practical commonsense reasoning tool-kit," BT Technol. J., vol. 22, no. 4, pp. 211–226, Oct. 2004.
82. W. T. Chen, S. C. Lin, S. L. Huang, Y. S. Chung, and K. J. Chen, "E-HowNet and automatic construction of a lexical ontology," in Proc. 23rd Int. Conf. Comput. Linguistics: Demonstrations, Beijing, China, 2010.
83. [S.-M. JI and X.-H. HUANG, "Review of development and application of industrial robot technology", Journal of Mechanical & Electrical Engineering, vol. 32, no. 1, pp. 1-13, 2015.
84. T. Gomi, " New Al and service robots", The Industrial Robot, vol. 30, no. 2, pp. 123-138, 2003
85. ISO Press, "Manipulating Industrial Robots – Vocabulary", ISO Standard 8373,1994
86. D. Ball, P. Ross, A. English, P. Milani, D. Richards, A. Bate, B.Upcroft, G. Wyeth, C. Corke, "Farm Workers of the Future: Vision-Based Robotics for Broad-Acre Agriculture", IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 97-107, 2017.
87. E. Probst, " Flexible Robot Arm Boosts Production", Modern Machine Shop, vol. 86, no. 4, pp. 112-124, 2013.
88. S. Berman, Y. Edan, M. Jamshidi, "Navigation of decentralized autonomous automatic guided vehicles in material handling ", IEEE Transactions on Robotics and Automation,vol. 19, no. 4, pp. 743-749, 2003.
89. Y. Yang, L. Li, "The design and implementation of a smart e-Receptionist", IEEE Potentials, vol. 32, no. 4, pp. 22-27, 2013.
90. Kimitoshi Yamazaki, Ryohei Ueda, Shunichi Nozawa, Mitsuharu Kojima, Kei Okada, Kiyoshi Matsumotoa, Masaru Ishikawa, Isao Shimoyam, and Masayuki Inaba, "Home-Assistant Robot for an Aging Society", Proceedings of the IEEE, vol. 100, no. 8, pp. 2429-2441, 2012.
91. L. Zorn, F. Nageotte, P. Zanne, A. Legner, B. Dallemagne, J. Marescaux, M. Mathelin, " A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD " IEEE Transactions on Biomedical Engineering, vol. 65, no. 4, pp. 797-808, 2017.
92. M. HAEGELE, “Executive Summary World Robotics 2017 Service Robots", World Robotics - Service Robots, pp. 12-19, 2017.
93. J. Choi, Y. Cho, J. Choi, J. Choi, "A Layered Middleware Architecture for Automated Robot Services", International Journal of Distributed Sensor Networks, vol. 2014, 2014.
94. Y. Kim, W. Yoon, "Generating Task-Oriented Interactions of Service Robots" IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, vol. 44, no. 8, pp. 981-994, 2014.
95. M. Obrist, E. Gatti, E. Maggioni, C.-T. Vi, C. Velasco, "Multisensory Experiences in HCI", IEEE Computer Society,vol. 24, no. 2, pp. 9-13, 2017.
96. W. Guo, X. Sheng, H. Liu, X. Zhu, " Toward an Enhanced Human–Machine Interface for Upper-Limb Prosthesis Control With Combined EMG and NIRS Signals" IEEE Transactions on Human-Machine Systems, vol. 47, no. 4, pp. 564-575, 2017.
97. S. Rautaray, A. Agrawal, "Real Time Multiple Hand Gesture Recognition System for Human Computer Interaction" International Journal of Intelligent Systems and Applications vol. 4, no. 5, pp. 56-64, 2012.
98. A. Jungk, B. Thull, L. Fehrle, A. Hoeft, " A Case Study in Designing Speech Interaction with a Patient Monitor", Journal of Clinical Monitoring and Computing, vol. 16, no. 4, pp. 295-307, 2000.
99. J. Hirschberg, B. Ballard, D. Hindle, "Natural language processing", AT&T Technical Journal vol. 67, no. 1, pp. 41-57, 1988.
100. V. Gatteschi, F. Lamberti, P. Montuschi, A. Sanna, "Semantics-Based Intelligent Human-Computer Interaction", IEEE Intelligent Systems, vol. 31, no. 4, pp. 11-21, 2016.
101. M. Ralph, M. Moussa, " Toward a Natural Language Interface for Transferring Grasping Skills to Robots", IEEE Transactions on Robotics Software, vol. 24, no. 2, pp. 468-475, 2008.
102. J. Tao, F. Zheng, A. Li, Y. Li, "Advances in Chinese Natural Language Processing and Language resources", Speech Database and Assessments, 2009 Oriental COCOSDA International Conference on, 2009.
103. Y. Sun, "For Computers, Too, It’s Hard to Learn to Speak Chinese", MIT Technology Review:https://www.technologyreview.com/s/608249/for-computers-too-its-hard-to-learn-to-speak-chinese/, 2017.
104. S.-K. Wong, C. Venkatratnam, "Pick and place mobile robot for the disabled through voice commands", Robotics and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on, 2016.
105. S. Rosa, A. Russo, A. Saglinbeni, G. Toscana, " Vocal interaction with a 7-DOF robotic arm for object detection, learning and grasping", Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference on, 2008.
106. L. F. D. Haro, R. Cordoba,J. D. Fuente, D. A. Peces, J. M. B. Mera, " Low-Cost Speaker and Language Recognition Systems Running on a Raspberry Pi", IEEE Latin America Transactions, vol. 12, no. 4, pp. 755-763, 2014.
107. Y. J, L. She, Y. Cheng, J. Bao, J. Y. Chai, N. Xi, " Program robots manufacturing tasks by natural language instructions", Automation Science and Engineering (CASE), 2016 IEEE International Conference on, pp. 21-25, 2016.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明