博碩士論文 986201017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.232.133.141
姓名 陳尉豪(Wei-Hao Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
(Assimilation of multiple-Doppler radar observations to improve the model quantitative precipitation forecast-A case study in IOP8 2008 SoWMEX)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效
★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究★ 使用偏極化/多都卜勒雷達資料研究莫拉克颱風(2009)地形降雨特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雷達觀測具有高時空解析度的優點,常使用於劇烈天氣的監控與觀測。本研究主要目的為利用多部都卜勒雷達觀測資料,改善模式當時的初始場,增進模式降水定量預報(Quantitative Precipitation Forecast:QPF)之能力。此方法主要包含三大部分:(1)多都卜勒風場合成、(2)熱動力反演、(3)水汽調整。
吾人選取2008西南氣流實驗計畫(SoWMEX)中所觀測到的IOP8個案,作為本研究的實驗對象。使用中央氣象局七股雷達(RCCG)、墾丁雷達(RCKT)及美國國家大氣研究中心(NCAR)所屬的SPOL雷達,於2008年6月14日1200UTC當時的回波及徑向風觀測資料,反演出三維風場結構,接著透過動量方程計算大氣熱動力場,並且利用回波等條件對水汽進行調整,最後同化至模式中。本研究使用NCAR Weather Research and Forecasting (WRF) Model作為計算平台。
本研究設計了一系列實驗,主要的結果有:(1)Kain-Fritsch及WSM6 Scheme為最佳的積雲參數化與微物理組合、(2)水汽的調整有其必要性、(3)風場合成與熱力反演時需考慮雪的存在、(4)以多部雷達網連增加資料覆蓋量對同化結果有重要的影響。
經過本方法調整模式初始場,實驗顯示模式的預報能力可達三小時,雖然降水有高估之趨勢,但相較未同化前的降水分佈會更趨近於觀測。未來更可將本方法用於測試午後對流或甚至颱風降雨系統的預報上。
摘要(英) An important advantage of radar observations is their high temporal and spatial resolutions, which are suitable for heavy weather surveillance. The purpose of this study is to improve the initial field and hence the quantitative precipitation forecast (QPF) of the numerical model by using multiple-Doppler radar observation data. The assimilation technique includes three components: multiple-Doppler radar wind synthesis, thermodynamic retrieval and moisture adjustment. A case during IOP8, Southwest Monsoon Experiment (SoWMEX) 2008 is selected in this study. The radar data in use are the reflectivity and radial wind of the RCCG and RCKT radars from CWB and the SPOL radar from NCAR at June 14, 2008. The 3-D winds, retrieved from the radar and sounding data, are utilized to calculate thermodynamic fields by the momentum equations. The moisture field is updated if some conditions, including a minimum reflectivity of 30 dBZ, occur. The numerical model in use is the Weather Research and Forecasting (WRF) model from NCAR.
Some conclusions are made after a series of experiments: (1) A combination of Kain-Fritsch cumulus parameterization and WSM6 microphysics schemes gives the best result; (2) The moisture adjustment is necessary; (3) Both wind and thermodynamic retrieval algorithms consider the effect of snow; (4) Using multiple-Doppler radar data is necessary because a larger data coverage leads to better results. The above assimilation technique in this case significantly improves the accuracy of the forecast for at least 3 hours compared with the one without data assimilation in spite of overestimated precipitation. We expect applications of this technique to the cases of afternoon convection and even typhoons in the future.
關鍵字(中) ★ 都卜勒雷達
★ 資料同化
★ 定量降水預報
關鍵字(英) ★ Doppler radar
★ data assimilation
★ quantitative precipitation forecast
論文目次 中文摘要…………………………………………………………………….…..i
英文摘要…………………………………………………………………….….ii
致謝…………………………………………………………………….………iii
目錄……………………………………………………………………………..iv
圖表說明…………………………………………………………………….….vi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文架構 4
第二章 研究個案介紹 5
2.1 2008年西南氣流實驗 5
2.2 IOP 8個案介紹 5
2.3 雷達資料覆蓋率 6
第三章 研究方法 8
3.1 雷達資料品質控管與處理 8
3.2 都卜勒雷達風場合成 8
3.3 熱動力反演方法 11
3.4 熱動力場與水汽調整方法 14
3.5 反演分析場與模式結合方法 16
第四章 反演結果驗證及分析 17
4.1 背景風場 17
4.2 反演結果 18
4.3 與模式預報場結合 19
第五章 實驗設計 20
5.1 數值模式簡介 20
5.2 WRF模式設定 20
5.3 校驗方法 20
5.3.1降水校驗 21
5.3.2風場校驗 22
第六章 實驗結果 24
6.1 雲物理和積雲參數化測試 24
6.2 控制組分析 25
6.3 水汽調整的影響 26
6.4 水汽調整飽和狀態之變化 26
6.5 反演時加入雪的影響 27
6.6 與模式結合權重改變測試 28
6.7 無SPOL雷達觀測的影響 29
6.8 讓模式未知的微物理重新生長測試 30
第七章 結論與未來展望 31
7.1 結論 31
7.2 未來展望 32
參考文獻 35
參考文獻 尤心瑜和廖宇慶,2011;使用都卜勒氣象雷達資料改善模式定量降雨預報之可行性研究-以模擬資料測試之實驗結果。大氣科學,第39期,1–24。
鄧仁星,2000:RASTA(Radar Analysis System for Taiwan Area)使用說明書。
鐘高陞、廖宇慶、陳台琦,2002:由都卜勒風場反演三維熱動力場的可行性研究-以台灣地區颮線個案為例。大氣科學,第30期,313–330。
Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1330.
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observation. NOAA Tech. Memo. Erl Nssl-62, 60pp.
Chung, K. S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Mon. Wea. Rev., 137, 4115–4135.
Crook, N. A., 1996: The sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.
_____, and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19, 888–898.
_____, and _____, 2004: Analysis and forecasting of the low-level wind during the Sydney 2000 forecast demonstration project. Wea. Forecasting, 19, 151–167.
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
Lin, Y.-J., H. Shen, T.-C. C. Wang, Z-S. Deng, and R. W. Pasken, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part II: Dynamic and thermodynamic structures and momentum budgets. J. Atmos. Sci., 47, 2382–2399.
Liou, Y.-C., 2001: The derivation of absolute potential temperature perturbations and pressure gradients from wind measurements in three-dimensional space. J. Atmos. Oceanic Technol., 18, 577–590.
_____, T.-C. Chen Wang, and K. S. Chung, 2003: A three-dimensional variational approach for deriving the thermodynamic structure using Doppler wind observations—An application to a subtropical squall line. J. Appl. Meteor., 42, 1443–1454.
_____, Y.-J. Chang., 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010.
Rogers R. R., and M.K. Yau,1989:A short course in cloud physics, Pergamon, Oxford, England, 293pp.
Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 2142–2157.
_____, 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426.
_____, and J. Sun, 1990: Single-Doppler observations of a West African squall line on 27–28 May 1981 during COPT 81: Kinematics, thermodynamics and water budget. Mon. Wea. Rev., 118, 1826–1854.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570-575.
Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265–1287.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
_____, and _____, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.
_____, and _____, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation Forecast using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model–Real Case Studies during SoWMEX in Taiwan. Wea. Forecasting (Accepted)
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807.
Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002a: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433–453.
_____, _____, and _____, 2002b: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454–476.
Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788.
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2011-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明