博碩士論文 986201022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.110.107
姓名 徐開炫(Kai-Husan Hsu)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 2009年春季鹿林山背景站氣膠垂直分佈與光學特性分析
(Aerosol Optical Properties Observed in 2009 Spring at Lulin Atmospheric Background Station, Taiwan)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在利用鹿林山空氣品質背景站( 23.469° N、120.874° E,2862 m MSL)之太陽輻射儀、積分式散光儀、微粒碳吸收光度計與環保署中央大學(海拔144公尺)之微脈衝光達進行氣膠垂直特性觀測,整合衛星、地面空氣品質和氣流後推軌跡等資料,探討鹿林山 2009 年春季(3-5月)氣膠光學特性與污染源之關連性。
  
氣膠光學厚度(τ500)平均值為 0.120 ± 0.105,3、4月τ500 高於 5 月,與 CO 及 PM10 濃度變化趨勢相同。Ångström exponent440-870nm 平均為 1.170 ± 0.374,且3、4月高於 5 月,顯示 3 、 4 月氣膠粒徑較小, 5 月氣膠粒徑大。地表單次散射反照率日平均值隨波長增加而遞減,此為混合型氣膠的特徵,且 3 、 4 月較小,顯示當時氣膠對於太陽輻射具有較強的吸收作用, 5 月地表氣膠則有較強之散射作用。垂直氣柱不對稱因子(g)日平均值隨波長增加而緩慢遞減,此種特徵偏向混合氣膠的狀態特徵。垂直消光係數剖面平均結果顯示春季氣膠分佈呈現兩層結構之特徵,下層高度為 0.3-2 公里,氣流來源以蒙古、中國北部及日韓地區為主,上層高度為 2.3-5 公里,氣流來源為中南半島與中國南部。
3/16-3/23生質燃燒事件期間,氣膠中OC 、 EC 、 K+ 、 Ca2+ 、 NO3- 質量濃度出現明顯高值且具有相同變化趨勢。由日變化趨勢可知夜間鹿林山背景站單次散射反照率普遍較低,且於每日 12:00 UTC 前後發生較明顯之數值變化。此外,本研究針對生質燃燒與春季背景事件進行比較,春季背景單次散射反照率隨波長下降幅度小, g 隨波長先降後升,垂直分佈介於0.3至1.7公里間;生質燃燒事件單次散射反照率與 g 值隨波長增加而遞減,高度分佈於1.7至4公里。
春季鹿林山背景站之氣膠具有生質燃燒及沙塵特徵,5 月氣流來自中國、韓國等地,Ångström exponent440-870nm 、單次散射反照率與?g 值呈現粒徑大、散射強之沙塵特性。3、4月氣流經過中南半島,氣膠光學厚度高於 5月,氣膠光學特性數值顯現出粒徑小、吸收強之生質燃燒特徵,且於明顯生質燃燒事件期間(3/16 - 3/23),鹿林山背景站與中央大學上空2 - 4公里之氣膠性質相似性高。
摘要(英) The purpose of this study is to characterize the aerosol optical properties measured by using Sun-Photometer, Nephelometer and Particle Soot Absorption Photometer at Lulin Atmospheric Background Station (LABS, 2,868 m; 23.47°N, 120.87°E) during spring (Mar-May) 2009. In combination with the use of micro-pulse lidar (MPL) in Chung-Li, satellite, ground-level particle mass concentrations and backward trajectory analysis, a comprehensive study of the vertical profile of aerosol optical properties and the source-receptor relationship was achieved.
The mean aerosol optical depths (?500) was 0.120 ± 0.105, and much higher in March and April. The variation of CO and PM10 was consistent ?500. The averaged Ångström exponent????????nm was 1.170 ±0.374, and March and April also higher, indicating the particle size was larger in May.The single scattering albedo (SSA, ?) at surface decreased gently with increasing wavelength, revealing the characteristics of mixing aerosols. Lower ?550nm in March and April showed that aerosol had more absorption capability. The asymmetry factor (g) decreased with increasing wavelength, also indicating the characteristics of mixing aerosols. Extinction coefficients derived from MPL and CALIPSO(Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) showed a two-layer structure (0.3-2 km and 2.5-5 km). Backward trajectory analyses of upper layer(2.5-5 km) showed that these air masses were mainly from the Indo-China peninsula. Low-level air masses were mainly from Mongolia and northern China.
During the event of 3/16-3/23, variation of OC、EC、K+、Ca2+ and NO3- had similar trends and higher values. There was commonly low ????nm at nighttime, and the value varied significantly at about 12:00 UTC. In addition, the ??decreased gently with increasing wavelength during springtime background situation. Meanwhile, the g first decreased and then increased with increasing wavelength. The vertical profiles of aerosol extinction showed higher values between 0.3 and 1.7 km in springtime normal situation. Influence of biomass burning was the most significant between March 18 and 23, as indicated by a high average AOD of 0.45. The ? and g decreased with increasing wavelength. The vertical profiles of aerosol extinction showed higher values between 1.7 and 4 km during biomass burning event.
關鍵字(中) ★ 氣膠
★ 光達
關鍵字(英) ★ aerosol
★ Lidar
論文目次 摘要..............I
Abstract..............III
目錄..............VI
表目錄..............VIII
第一章 前言..............1
1.1 研究動機..............1
1.2 研究目的..............3
第二章 文獻回顧..............4
2.1 氣膠的光學特性 ..............4
2.2 光達之應用..............7
2.3 生質燃燒氣膠之排放和物化特性..............10
第三章 研究方法..............13
3.1 研究架構..............13
3.2 實驗時間與地點 ..............13
3.3 實驗設備與觀測原理..............14
3.3.1 太陽輻射儀 (Sunphotometer)..............14
3.3.2 微脈衝光達 ( Micro-Pulse Lidar , MPL)..............16
3.3.3 NOAA 氣膠觀測系統..............18
3.4 氣膠光學特徵參數..............20
3.4.1 氣膠光學厚度 ( Aerosol Optical Depth, AOD,τ).......20
3.4.2 Ångström exponent..............20
3.4.3 單次散射反照率 (Single Scattering Albedo)..........21
3.4.4 不對稱因子 (Asymmetry Factor, g)..............22
3.4.5 輻射驅動力 (Radiative forcing)..............22
第四章 結果與討論..............24
4.1. 鹿林山背景站地面監測資料分析..............24
4.2 垂直氣膠光學特性與輻射效應分析..............28
4.3 氣膠垂直分佈與來源分析..............31
4.4 個案分析..............33
4.4.1 生質燃燒個案(2009/3/16 - 23)..............34
4.4.2 春季一般個案探討 (2009/5/05 - 10)..............40
4.4.3 個案比較..............41
第五章 結論與未來展望..............43
5.1 結論..............43
5.2 未來展望..............46
參考文獻..............47
參考文獻 林能暉、蔡錫祺、王家麟、李崇德、許桂榮,2010:鹿林山背景測站科技研究及操作維護計畫專案工作計畫。行政院環境保護署。
王聖翔,2007:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及
對氣象場的反饋作用。國立中央大學,大氣物理研究所博士論文,中壢。
陳韡鼐、林博雄、陳自光、周崇光及陳正平,2006:Diurnal Cycle of Mixing Height Measured by Lidar,中華民國國際氣膠科技研討會。嘉南藥理科技大學, 2006年9月29日-30日。
江智偉,2005:對流層氣膠光學性質之研究。國立中央大學物理研究所博士論文,中壢。
郭俊江,2006:光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂
直特性及邊界層高度之變化。國立中央大學大氣物理研究碩士論文,中壢。
徐睿鴻,2007:鹿林山與中壢氣膠光學特性之監測與比較。國立中央大學,大氣物理研究所碩士論文,中壢。
賈浩平,2008:微脈衝光達及太陽輻射儀之應用:2005-2007 年中
地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士
論文,中壢。
張廷豪,2009:多重濾鏡旋轉輻射儀與太陽輻射儀之應用:2006-2008年鹿林山氣膠光學特性之探討。國立中央大學大氣物理研究碩士論文,中壢。
林家慶,2007:鹿林山空氣品質背景監測站之背景值分析。國立中央大學大氣物理研究碩士論文,中壢。
林和駿,林博雄及劉紹臣,2005:台灣南北城市氣膠光學厚度的特徵,中華民國國際氣膠科技研討會,203-212。中央研究院,2005
年9月30日 - 10月1日。
黃希爾,2004:東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文,中壢。
張佑嘉,2011:中南半島近污染源生質燃燒氣膠特性及其傳輸演化
與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文,中壢。
余政哲,2010:鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文,中壢。
劉承珏,2009:以光達觀測分析台北之邊界層與氣膠特性。國立台灣大學大氣科學研究所碩士論文,台北。
江智偉,達斯及倪簡白,2009:人造衛星光達和地面光達之氣膠與
雲量測比較,大氣科學期刊,第37期1號,11-26。
許紹鵬,2010:鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所博士論文,中壢。
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E.J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288,1,042-1,047.
Anderson,T.L., and Ogren, J.A., "Deteriming aerosol radiative properties using the TSI 3563 Integrating Nephelometer," Aerosol Science and
Technol., 29, 57-69, 1998.
Andrews, E., P. J. Sheridan, and J. A.Ogren(2011), Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma, Atmos. Chem. Phys. Discuss., 11, 11939–11957,2011.
Bond,T.C., Anderson, T.L., Campbell, D.,"Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols," Aerosol Science and Technology, vol. 30, pp582-600, 1999.
Brosset, C., 1978. Water-soluble sulphur compounds in aerosols.Atmos. Environ. 12, 25-38.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J.E. Hansen,and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science,255, 423-430.
Chou, M. -D., P. -H. Lin, P. -L. Ma, and H. -J. Lin, 2006, Effects of aerosols on the surface solar radiation in a tropical urban area. J.Gerphys. Res., 111, D15207, doi:10.1029/2005JD006910.
Chen, W.N., Y.W. Chen, Charles C.K. Chou, S.Y. Chang, P.H. Lin, and J.P. Chen (2009), Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan, Atmos. Environ., 43, 2,700-2,708.
Crutzen, P. J., and V. Ramanathan (2003), The Parasol Effect on Climate, Science, 302,1,679-1,681.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J.E. Hansen, and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423-430.
Charlson R. J., T. L. Anderson, H. Rodhe (1999), Direct climate forcing by anthropogenic aerosols: Quantifying the link between sulfate and radiation,Contrib. Atmos. Phys., 72, 79-94.
Chuang, C. C., J. E. Penner, L. L. Edwards (1992), Nucleation scavenging of smoke particles and simulated droplet size distributions over large fires. J. of Atmos. Science, 49, 1,264-1,275.
Carmichael, G. R., et al. (2003), Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment,J. Geophys. Res., 108(D21), 8823,
doi:10.1029/2002JD003117.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris (1998),Analysis of the seasonal behavior of tropospheric ozone at Hong Kong. Atmos. Environ., 32, 159-168.
Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J.D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002, Full-time,Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instrument and Data Processing, J. Atmos. Oceanic Technol., 19, 431-442.
Chylek, P., and J. Wong (1995), Effect of absorbing aerosols on global radiation budget, Geophys. Res. Lett., 22, 929-931.
Delene, D. J. and Ogren, J. A.: Variability of aerosol optical propertiesat four North American surface monitoring sites, J. Atmos.Sci., 59, 1135–1150, 2002.
Dubovik, O., and M. D. King (2000), A flexible inversion algorithm for retrieval of aerosol optical properties fromSun and sky radiance measurements, J. Geophys. Res., 105(D16), 20,673–20,696, doi:10.1029/2000JD900282.
Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman,M. D. King, D. Tanre, and I. Slutsker (2002a), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko,P. Yang, and I. Slutsker (2002b), Non‐spherical aerosol retrievalmethod employing light scattering by spheroids, Geophys. Res Lett.,29(10), 1415, doi:10.1029/2001GL014506.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen,B. Chatenet, L. Gomes, X.-Y. Zhang, S. -C. Tsay, Q. Ji, D.Giles, andI. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
Ferek, R. J., J. S. Reid, P. V. Hobbs, D. R. Blake, and C. Liousse (1998), Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, J. Geophys. Res., 103(D24), 32,107–32,118.
Hayasaka, T. et al., 2007. Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds—East Asia Regional Experiment 2005. J. Geophys. Res.112D. doi:10.1029/2006JD008086.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J.Geophys. Res., 102(D6), 6,831–6,864.
Haywood, J., S. Osborne, P. Francis, P. Formenti, and M. O. Andreae (2003), The mean physical and optical properties of biomass burning aerosols measured by C-130 aircraft during SAFARI-2000, J. Geophys. Res. 108(D3), 8488.
Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E.Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I.
Jankowiak, and A. Smirnov, 1998, AERONET-A federated instrument network and data archive for aerosol characterization,Remote Sensing of Environment, 66, 1-16.
Jacobson, M. Z. (2000), A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols,Geophys. Res. Lett., 27,217-220.106(D2), 1,551–1,568.
Jacobson, M. Z. (2001b), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697.
Gras, J. L., J. B. Jensen, K. Okada, M. Ikegami, Y. Zaizen, and Y.Makino (1999), Some optical properties of smoke aerosol in Indonesia and tropical Australia, Geophys.Res.Lett., 26(10),1393–1396.
Kim, D.-H., B.-J.Sohn, T. Nakajima, T. Takamura, T. Takemura, B.-C. Choi, and S.-C. Yoon (2004), Aerosol optical properties over east Asia determined from ground-based sky radiation measurements, J. Geophys. Res., 109, D02209, doi:10.1029/2003JD003387.
Kudo, R., A. Uchiyama, A. Yamazaki, and E. Kobayashi (2010), Seasonal characteristics of aerosol radiative effect estimated from ground-based solar radiation measurements in Tsukuba, Japan, J. Geophys. Res., 115, D01204, doi:10.1029/2009JD012487.
Liu, H., D. J. Jacob, I. Bey, R. M. Yantosca, B. N. Duncan, and G. W.Sachse, 2003: Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res.,108(D20), 8786, doi: 10.1029/2002JD003102.
Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier(1996), A global three-dimensional model study of carbonaceous aerosols, J.Geophys. Res., 101(D14), 19,411–19,432.
Liao, H. and H. Seinfeld (1998), Effect of clouds on direct aerosol radiative forcing of climate, J. Geophy. Res., 103, 3,781-3,788.
Léon, J.-F., Derimian, Y., Chiapello, I., Tanré, D., Podvin, T., Chatenet, B., Diallo, A., and Deroo, C.: Aerosol vertical distribution and optical properties over M'Bour (16.96° W; 14.39° N), Senegal from 2006 to 2008, Atmos.Chem.Phys., 9, 9249-9261, doi:10.5194/acp-9-9249-2009, 2009.
Menon S., J. Hansen, L. Nazarenko, Y. Luo (2002), Climate effects of black carbon aerosols in China and India. Science, 297, 2,250-2,253.
Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim (2004), Aerosoloptical depth during episodes of Asian dust storms and biomassburning at Kwangju, South Korea, Atmos.Environ., 38, 1,313-1,323.
Omar, Ali H., and Coauthors, 2009: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos.Oceanic Technol., 26, 1994–2014.doi: 10.1175/2009JTECHA1231.1
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001), Aerosol, Climate, and Hydrological Cycle. Science, 294,2,119-2,124.
Reddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz (2005), Aerosol optical depths and direct radiative perturbations by species and source type, Geophys. Res. Lett.,32, L12803,doi:10.1029/2004GL021743.
Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Yang, C. F. O.,and Wang, S. H.(2010): Temporal distribution and potential sources of atmosphetic mercury measured at a high-elevation background station in Taiwan, Atmos. Environ., 44, 2393–2400.
Sugimoto, N., et al. (2005), Study of Asian dust phenomena in 2001-2003 using a network of continuously operated polarization lidars,Water Air Soil Pollut. Focus, 5, 145–157.
Streets, D. G., and S. T. Waldhoff (2000), Present and future emissions of Air pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34, 363–374.
Streets, D. G., K. F. Yarber, J. H. Woo, and G. R. Carmichael (2003b), Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochemical Cycles, 17(4), 1099, doi:10.1029/2003GB002040.
Streets, D. G., T. C. Bond, T. Lee, and C. Jang (2004), On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, D24212, doi:10.1029/2004JD004902.
Serm Janjai, Sumaman Buntung, Rungrat Wattan, Itsara Masiri, Mapping solar ultraviolet radiation from satellite data in a tropical environment, Remote Sensing of Environment, Volume 114, Issue 3, 15 March 2010, Pages 682-691, ISSN 0034-4257, DOI: 10.1016/j.rse.2009.11.008.
Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ., 8,1251-1256.
Trentmann, J., M. O. Andreae, H. F. Hobbs, R. D. Ottmar, T. Trautnmann (2002), Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res., 107, AAC 5-1 – 5-15.
Tanner, R.L., Leaderer, B.P., Spengler, J.D., 1981. Acidity of atmospheric aerosols. Environ. Sci. & Technol. 15, 150-1153.
Wigley, T. M. L., and S. C. B. Raper (1990), Natural variability of the climate system and diction of the greenhouse effect, Nature, 344, 324-327.
Wang, S. H., N. H. Lin, M. D. Chou, and J. H. Woo (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P, J. Geophys. Res., 112 , D10222 doi:10.1029/2006JD007564.
Welton, E. J., et al., 2000, Ground-based lidar measurements of aerosolsduring ACE-2:Instrument description, results, and comparisons with other ground-based and airborne measurements, Tellus, Ser. B, 52,635-650.
Xia, X., H. Chen, P. Goloub, W. Zhang, B. Chatenet, and P. Wang(2007), A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China, J.Geophys. Res., 112, D12203, doi:10.1029/2006JD008119.
Xia, X., Z. Li, B. Holben, P. Wang, T. Eck, H. Chen, M. Cribb, and Y. Zhao(2007c), Aerosol optical properties and radiative effects in the Yangtze Delta region of China, J. Geophys. Res., 112, D22S12,doi:10.1029/2007JD008859.
Yonemura, S.,H. TSURUTA,T. Maeda, S. Kawashima, S. Sudo, M.Hayashi (2002), Tropospheric ozone variability over Singapore from August 1996 to December1999. Atmospheric Environment, 36, 2,061-2,070.
指導教授 林能暉(Neng-Hui Lin) 審核日期 2011-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明