博碩士論文 986201023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.205.167.104
姓名 林柏旭(Po-Hsu Lin)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 納莉颱風(2001)之位渦收支分析
(The Potential Vorticity Budget of Typhoon Nari (2001))
相關論文
★ 地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究★ 桃園大圳灌區降雨量之研究分析
★ 颱風事件下之集水區逕流模擬★ 台灣地區降水型態分類之研究:層狀降水與對流降水型態
★ 地形降水對於環境條件與地形特性之敏感度測試:3維理想地形模擬研究★ 2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ 雷達推估降雨於石門水庫霞雲集水區之流量模擬研究
★ 納莉颱風(2001)之水收支分析★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究
★ 懸浮微粒數量濃度對梅雨鋒面降水影響之敏感度研究★ 台灣地區極端降雨颱風之環境特徵合成分析
★ 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較★ 西北太平洋熱帶氣旋生成之多尺度分析
★ 颮線與山脈地形的交互作用:理想模擬研究★ 雲凝結核濃度對於納莉(2001)颱風於海洋環境之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱帶氣旋是個具有強烈的旋轉氣流且伴隨著旺盛對流雲系的暖心低壓系統,而由於位渦這個物理量同時結合了動力以及熱力因子,且在絕熱無摩擦的條件下具有保守的特性,故用它來分析熱帶氣旋變化會是個相當好的物理量。近年來有不少與熱帶氣旋位渦相關的研究,但採用位渦收支(Potential Vorticity Budget)對實際颱風個案進行診斷分析的研究並不多。因此,分析位渦收支可以解析出颱風登陸過程中何種動力及熱力過程之演變,而臺灣的陡峭地形又會對位渦收支造成何種影響,是值得探究的課題。
本研究參考Pedlosky(1987)及Schubert et al.(2001),得出一非靜力可壓縮之位渦收支方程式,針對Yang et al.(2008)利用PSU/NCAR MM5數值模式模擬納莉(2001)颱風所輸出之高時間、空間解析度的模式輸出,進行位渦診斷分析,來探討納莉颱風從海上到登陸臺灣過程中的位渦收支之變化情形。隨後修改臺灣地形高度,分別透過(1)移除臺灣地形的敏感度實驗,以及(2)進一步將地面替換為純海洋的敏感度實驗,來討論臺灣地形及陸地對位渦收支的影響。
從控制組實驗的模擬結果來看,納莉颱風在尚未登陸前其位渦分佈呈現一典型成熟熱帶氣旋的分佈型態,颱風登陸瞬間由於地形的影響使其對流增強及眼牆收縮。在位渦收支分析的結果中,水平平流作用會將位渦順著颱風環流傳遞,並隨著徑向入流將位渦帶入颱風內核區域,垂直平流會將於低層經由潛熱作用所生成的位渦向上傳遞,平流作用僅扮演著於三度空間中使位渦重新分佈的角色。潛熱作用項在低層中是位渦的主要貢獻項,而在中高層則是位渦的主要消耗項。摩擦項之影響僅在低層較為顯著,但由於此項中包含了亂流混合以及邊界層摩擦力的作用,故並不一定都是造成位渦的負貢獻。
在地形敏感度的實驗結果中,若將臺灣地形移除,則颱風在登陸後摩擦作用項於近地面會產生明顯的負貢獻,顯示地表摩擦力的影響,同時在該處潛熱加熱項也會使位渦生成;與控制實驗相比,臺灣地形的存在會使摩擦項影響較大,且並不一定都是對位渦造成負貢獻,而由潛熱加熱項所生成的位渦也較多,故可得知臺灣地形的存在對於摩擦作用項來說,可能會加強低層的亂流混合,從而導致位渦的增加。此外,臺灣地形及地表摩擦力的存在都能夠促使對流發展,進而使位渦增強。在此無臺灣地形的免感度實驗中,隨著颱風繼續進入陸地,低層的位渦環會逐漸消失,相較於純海洋實驗中則沒有此現象,由此我們可以發現海表面通量是維持颱風內核位渦環存在的重要要素之一。當颱風離開臺灣再次進入海洋時,不對稱的潛熱加熱作用會使颱風重新形成一多邊形的位渦環,並可能使颱風路徑出現小幅度的擺線震盪。
摘要(英) Potential Vorticity (PV) is a quantity that combines both dynamic and thermodynamic information, and it is conserved under the adiabatic and frictionless condition. Therefore it is suitable for analyzing tropical cyclones’ (TC) dynamic. In recent years, there have been considerable studies between TCs and the PV. However, it appears that only a few studies using the potential vorticity budget to analyze a real TC case. Thus, what kind of dynamical / thermodynamical interaction processes could be obtained from the PV budget analysis, and what phenomena will be caused by the steep topography of Taiwan are worthy of study.
A compressible nonhydrostatic PV budget equation, derived base on Pedlosky (1987) and Schubert et al. (2001), is used here to gain insights into the PV budget evolution of a typhoon from its oceanic stage to landfall stage. The budget is conducted using high spatial resolution (2-km horizontal grid size) hourly outputs from Yang et al. (2008), in which the Pennsylvania State University / National Center for Atmospheric Research Fifth Generation Mesoscale Model was used to simulate Typhoon Nari (2001) and reproduced reasonably-well results as verified against observations. Subsequently, a series of terrain-sensitivity tests were performed to examine the effect of Taiwan’s topography on PV budget.
When Nari was located on the ocean, its PV distribution exhibited the typical feature in a mature oceanic TC. By the time of landfall, its eyewall was contracted and convection was intensified due to the topography. From the budget perspective, PV was redistributed via horizontal and vertical advections. Latent heating term accounted for major PV generation in lower levels during the oceanic and early landfall stage. And it also acts as a major PV sink term at mid-upper levels. The friction term included both effects of eddy mixing and surface friction; hence, it did not just act as a PV sink term.
In the terrain-sensitivity experiments, if the Taiwan topography was removed, the friction term began to reduce PV over the Taiwan area in lower levels, which was opposed to that for the full-terrain run. As a result, the existence of Taiwan topography could enhance vertical eddy mixing. When comparing latent heating term and friction term, it is evident that both the Taiwan topography and surface friction are prone to trigger convection, releasing more latent heat and leading to the increase of PV. And the cut-off of ocean fluxes such as sensible heat and latent heat flux will cause the dissipation of the PV ring. In the no-terrain experiment, after the typhoon moves into the ocean again, a larger new PV ring formed. The asymmetry latent heating effect occurred on the land-sea interface not only contributed to the formation of this new PV ring, but make this new PV ring became polygonal as well. This phenomenon may also be a reason that causes the typhoon move in a trochoidal manner afterward.
關鍵字(中) ★ 納莉颱風
★ 位渦收支
關鍵字(英) ★ Typhoon Nari
★ Potential Vorticity Budget
論文目次 中文摘要……………………………………………………… i
英文摘要……………………………………………………… iii
誌謝  ……………………………………………………… v
目錄  ……………………………………………………… vii
圖目錄 ……………………………………………………… vii
符號說明……………………………………………………… xi
一、 緒論………………………………………………… 1
1-1 前言………………………………………………… 1
1-2 文獻回顧…………………………………………… 1
1-3 研究動機…………………………………………… 4
二、 模式設定與資料來源……………………………… 5
2-1 模式簡介…………………………………………… 5
2-2 模式設定…………………………………………… 5
2-3 資料來源…………………………………………… 6
2-4 對照組實驗設計…………………………………… 7
三、 研究方法…………………………………………… 8
3-1 位渦收支方程式…………………………………… 8
四、 模擬結果…………………………………………… 11
4-1 位渦分佈時序變化………………………………… 11
4-2 位渦收支分析……………………………………… 13
4-2-1 平流作用項………………………………………… 13
4-2-2 潛熱作用項………………………………………… 14
4-2-3 摩擦作用項………………………………………… 15
4-3 地形敏感度實驗…………………………………… 16
4-3-1 位渦分佈時序變化………………………………… 16
4-3-2 位渦收支時序變化:摩擦作用項………………… 17
4-3-3 位渦收支時序變化:潛熱作用項………………… 17
4-4 地形敏感度實驗:颱風出海後之變化情形……… 18
五、 結論與未來展望…………………………………… 19
5-1 結論………………………………………………… 19
5-2 未來展望…………………………………………… 21
參考文獻……………………………………………………… 23
附錄一 ……………………………………………………… 26
附錄二 ……………………………………………………… 29
參考文獻 王寶貫,1996:雲物理學。渤海堂,台北市,382頁。
周仲島,高聿正,李文兆,2008:納莉颱風登陸後內核中低層環流結構變
化特徵。大氣科學,第三十六期第三號,163-177
Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233–240.
Brand, S., and J. W. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Philippines. J. Appl. Meteor., 12, 104–109.
Elsberry, R. L., K. A. Emanuel, G. Holland, H. Gerrish, M. DeMaria, and C. Guard, 1992: Is there any hope for tropical cyclone intensity prediction? A panel discussion. Bull. Amer. Meteor. Soc., 73, 264-275.
Franklin, C.N., G.J. Holland, and P.T. May, 2006: Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev., 134, 2649-2669.
Haynes, P. H., and M. E. McIntyre, 1987: On the Evolution of Vorticity and Potential Vorticity in the Presence of Diabatic Heating and Frictional or Other Forces. J. Atmos. Sci., 44, 828–841.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.
Lackmann, G. M., and R. M. Yablonsky, 2004: The Importance of the Precipitation Mass Sink in Tropical Cyclones and Other Heavily Precipitating Systems. J. Atmos. Sci., 61, 1674–1692.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
Pedlosky, J., 1987: Geophysical Fluid Dynamics (2nd Ed.). Springer-Verlag, New York, 38-42.
Schubert, W. H., and B. T. Alworth, 1987: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147–162.
_________, S. A. Hausman, M. Garcia, K. V. Ooyama, H.-C. Kuo, 2001: Potential Vorticity in a Moist Atmosphere. J. Atmos. Sci., 58, 3148–3157.
Thorpe, A. J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci., 42, 397–406.
Wang Y., 2002a: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets. J. Atmos. Sci., 59, 1213-1238.
Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
_________, 2001: Numerical Simulation of Typhoon Gladys (1994) and Its Interaction with Taiwan Terrain Using the GFDL Hurricane Model. Mon. Wea. Rev., 129, 1533-1549.
_________, H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21–40.
Wu, L., and B. Wang, 2000: A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Wea. Rev., 128, 1899–1911.
_______, and _______, 2001: Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study*. J. Atmos. Sci., 58, 3639–3649.
Yang, B., Y. Wang, and B. Wang, 2007: The Effect of Internally Generated Inner-Core Asymmetries on Tropical Cyclone Potential Intensity. J. Atmos. Sci., 64, 1165–1188.
Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari(2001) at landfall. Part I: The topographic effects. J. Atmos. Sci., 65, 3095-3115.
_________, _________, X.-D. Tang, and Y. Zhang, 2011a: A modeling study of Typhoon Nari (2001) at landfall. Part II: Structural changes and terrain-induced asymmetries. J. Geophys. Res., 116 , D09112, doi:10.1029/2010JD015445
_________, T.-C. Chen Wang, Y. Zhang, and C.-Y. Weng, 2011b: Momentum budget evolution of Typhoon Nari (2001) during the landfall process. Terr., Atmos., and Oceanic Sci., in press.
_________, S. A. Braun, and D.-S. Chen, 2011c: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., in press.
Yau, M. K., Y. Liu, and D-L. Zhang, 1999: Numerical simulation of the inner-core structures of Hurricane Andrew (1992). Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 668–671.
________, _______, __________, and Y. Chen, 2004: A Multiscale Numerical Study of Hurricane Andrew (1992). Part VI: Small-Scale Inner-Core Structures and Wind Streaks. Mon. Wea. Rev., 132, 1410-1433.
指導教授 楊明仁(Ming-Jen Yang) 審核日期 2011-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明