博碩士論文 986202002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.14.121.242
姓名 曾世霖(Shih-Lin Tseng)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣西南外海高屏峽谷沉積物及沉積機制研究
(A study on sedimentary processes and sediments of the Gaoping Canyon offshore SW Taiwan)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化★ 台灣海峽及台灣西部平原之沈積層速度構造
★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動★ 台灣中部早期前陸盆地的地層紀錄
★ 台灣西南部前陸地區演育與古應力分析★ 台灣西北部漸新世至更新世盆地演化及層序地層
★ 煤岩材料與沉積環境綜合研判★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例
★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南海域天然氣水合物地質控制因素與資源量評估
★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義★ 臺灣台南外海正斷層以及近代沉積現象研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水下沉積作用長期監測困難,尤其對快速沉積事件之直接觀測記錄更為稀少,一般都是先藉由間接資料判識,其後再對目標區域做觀測或採樣研究。本研究藉由研究兩次地質事件後所採集之岩心沉積物,包括(1)2009年8月8日莫拉克颱風洪氾事件,其洪水自高屏溪出海,高濃度流體形成異重流沿高屏海底峽谷及馬尼拉海溝流動依序沖毀海底電纜;(2)2010年3月4日六龜地震(也有文獻稱甲仙地震),地震發生其間亦陸續觀測到海底電纜沿高屏海底峽谷下游及馬尼拉海溝受破壞,推測此地震造成海底山崩並伴隨著海底濁流產生。瞭解高屏峽谷流域的近代沉積作用,以期辨別颱風洪水造成之異重流及地震造成之濁流的沉積物特徵。
由海底電纜斷裂之資訊,計算異重流之流速及濁流流速,並分別對兩次不同事件之重力流作進一步分析。異重流事件,對比莫拉克颱風的降雨量與洪氾時期高屏溪的水流量,試圖去找出雨量、水流量及異重流之關係;六龜地震引發之海底濁流事件,藉由電纜斷裂資料分析其流速,並推估其山崩區域。我們也分析所採集之沈積物,沉積物分析包含沈積特徵描述、X光攝影、粒徑分析、礦物組成、磁感率及密度量測及碳13穩定同位素量測。
由海纜斷裂時間可得知莫拉克颱風所引起之重力流事件至少有三次:第一次(2009/8/9)於峽谷中游及下游,水深約1200-2702 m造成3處海底電纜斷裂,由斷裂點推得最大流速超過11 m/s,此次事件與陸域高屏溪觀測之最大逕流量時間相符,應為高沉積物濃度河水入海所形成之異重流事件;第二次(2009/8/12),沿峽谷下游及馬尼拉海溝處(水深約2900-3500 m),造成8處海底電纜斷裂,最大流速超過23 m/s,但此次事件發生時,高屏溪逕流量已明顯降低,推測應為洪水時期堆積在峽谷上游或斜坡不穩固之鬆軟沉積物,因重力作用產生崩移,引發濁流沿峽谷流動造成此次事件;第三次(2009/8/13),於峽谷中游、水深約1600 m處,造成1處海底電纜斷裂,由於高屏峽谷沿線之電纜大多已斷裂,故此次事件資訊不足無法詳加探討。(2)六龜地震事件:時間比對應為地震誘發海底山崩,並形成海底濁流沿地形低區及海溝流動。海纜斷點位於上部及下部增積岩體交界處以及馬尼拉海溝,水深約2700-3700公尺,由相對時間及位置計算出此濁流最大流速超過9 m/s,並推測海底山崩位置應為接近上部及下部增積岩體交界處的大陸斜坡。
經2009年莫拉克颱風異重流及2010年六龜地震濁流沉積事件分析及沉積物之研究後,依沉積物及沉積機制解釋高屏海底峽谷沉積系統。此峽谷沉積物受到異重流、濁流、洋流、河水及潮汐等沉積作用,並綜合出三種不同模式解釋:(1)異重流事件:若河水含大量沉積物時,沉積物隨洪水入海,常形成沉積物羽流漂浮於海水表層。若沉積物濃度過高,一般高於40g/l(Mulder, 2001a),則形成高濃度之異重流下沉入海床並沿著海床低處流動。沉積物羽流將隨河水推擠及表層海流作用下,擴散到高屏陸棚與峽谷上游兩岸沉積;異重流沿海床底部流動並向下切入高屏海底峽谷,並將沉積物往深海搬運,此流體能量大、侵蝕強,故可向下切斷海底電纜;另外,可能因側向侵蝕造成谷壁沉積物鬆動引起濁流事件(如莫拉克事件),使沉積物再次懸浮搬運、堆積。(2)濁流事件:由於台灣南部陸海域地震頻仍,易引發海底山崩形成濁流。濁流沿海床底部流動,可能進入峽谷,傳輸到馬尼拉海溝或直接進入斜坡盆地中堆積。上述兩重力流隨峽谷深度溢流物顆粒變化,上、中游因離源頭近、水道深及坡度陡,重力流能量、下切力雖強,但溢流沉積物卻以粉砂為主。其中,中游東側為斷層控制之峭壁,溢流沉積物無法越過;下游水道較淺、坡度緩,沉積物溢堤堆積砂質顆粒。(3)相對靜水期時,以半遠洋泥質沉積物為主,此時期沉積物難以保存於峽谷中,但普遍存在河口、陸棚、斜坡及峽谷兩岸,因峽谷中主要受控於侵蝕力強的重力流。
摘要(英) The Gaoping submarine canyon, connecting to the Gaoping river, is located offshore southwestern Taiwan on an accretionary wedge. Two major sediment transport processes that deliver Taiwan sediments to abyssal South China Sea are operating along the Gaoping canyon. They are flood-induced hyperpycnal flows and turbidity currents caused by submarine landslides. This study examines sediment cores to infer recent depositional processes along the Gaoping submarine canyon. In addition, I use the sequential submarine cable breakages along the Gaoping canyon during 2009 Morakot typhoon to calculate the flow velocity for the flood-induced hyperpycnal flows.
This study collected 17 gravity cores after the 2009 Morakot typhoon and 9 piston cores after the onshore 2010 Liouguei earthquake. Both events are accompanied by two episodes of gravity flows as revealed by series of submarine cable breakages along the canyon.
There are, at least, 3 episodes of submarine cable breakages along the Gaoping canyon during immediately after the 2009 Morakot typhoon. The first hyperpycnal event (2009/8/9) resulted in three locations of cable breakages in the middle and lower reaches (1200-2702 m). The flow velocity exceeded 11 m/s. Timing for this event correlates well with the peak flood of the Gaoping river. It is therefore interpreted as a hyperpycnal-flow event caused by high sediment concentration. For the second event (2009/8/12), there are 8 locations of cable breakages along the lower reach of the Gaoping submarine canyon and the Manila trench with water depth ranging from 2900 m to 3500 m. The flow velocity exceeded 23 m/s. Timing for this event coincides with lower river run-off. I therefore interpret that this event is a turbidity current caused by, perhaps, submarine landslides. For third event (2009/8/13), there is only one location of cable breakage in the middle reach lying at a water depth of 1600 m.
The onshore Liouguei earthquake induces submarine landslides that evolves into turbidity currents and flows the lower slope of accretionary wedge and the Manila trench as evidenced from. Submarine cable breakages lying in a water depth of 2700-3700 m. The velocity for this turbidity current exceeded 9 m/s.
Analyses on sediment cores reveal that the Gaoping submarine canyon is controlled by three main depositional processes: hyperpycnal flows triggered by extreme onshore floods; turbidity currents caused by submarine landslides; hemipelagic deposition.
Sediment by passing and erosive currents are the characteristic features in the upper and middle reaches of the canyon. By contrast, coarser-grained sediment deposition both in channel thalwegs and overbank areas are characteristic in the lower reach of the canyon due to a sudden decrease on canyon gradient. This study reveals that terrigenous materials are transported to deep sea along canyon by hyperpycnal flows during severe floods. Mineral contents and values of δ13C measured from sediments indicate that most of the sediments along the Gaoping canyon are sourced from the Taiwan mountain belt. Turbidity currents triggered by submarine landslides serve as another major sediment transport agent that deliver sediments accumulated in the Gaoping canyon to the Manila trench.
關鍵字(中) ★ 高屏海底峽谷
★ 沉積特徵
★ 異重流
★ 濁流
★ 由源至匯
關鍵字(英) ★ source to sink
★ turbidity currents
★ hyperpycnal flows
★ Gaoping submarine canyon
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2前人研究 2
1.2.1 海域地質災害 2
1.2.2 濁流與異重流的比較 3
1.3 研究資料與方法 4
1.3.1 研究資料來源 4
1.3.2 研究方法 4
第二章 研究區域背景 12
2.1 地體構造及地形 12
2.2 區域地質 14
2.2.1 陸域地質 14
2.2.2 海域地質 15
2.3 海流概況 16
第三章 研究方法 28
3.1 資料蒐集 28
3.2 沉積物分析 29
3.2.1 岩心描述 29
3.2.2 多重感應元岩心掃描儀(MSCL) 29
3.2.3 X光攝影 30
3.2.4 含水量 31
3.2.5 粒徑分析 31
3.2.6 成分分析 32
3.2.6.1 薄片鑑定 32
3.2.6.2 X光粉末繞射分析 33
3.2.7 電子顯微鏡 34
第四章 重力流事件分析 41
4.1 莫拉克颱風事件 41
4.2 六龜地震事件 43
第五章 表層沉積物特徵 52
5.1 物理性質 52
5.2 礦物組成與顆粒組構 54
5.2.1薄片分析 54
5.2.2 X光粉末繞射分析(XRD) 54
5.2.3 沉積物顆粒組構觀察 55
5.3 沉積構造特徵 56
5.3.1沉積物相分類 56
5.3.2 沉積作用 57
5.4 碳13穩定同位素 59
第六章、高屏海底峽谷沉積系統 89
6.1 沉積特徵與沉積作用 90
6.2 由源至匯探討 93
6.3 異重流與濁流之比較 94
第七章 結論 97
參考文獻 99
附錄A、樣本製備流程 104
附錄B、岩心資料 107
參考文獻 何春蓀(1975)台灣地質概論—台灣地質圖說明書,經濟部中央地質調查所,163 頁。
何春蓀(1986)台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所,164頁。
吳佳瑜(2008)台灣南部海域海底崩移之分佈與特徵。國立台灣大學海洋研究所碩士論文,84頁。
吳孟麟(2004)高屏海底峽谷與陸棚流場之研究,國立中山大學海洋地質及化學研究所碩士論文,119頁。
張育嘉(2000)高屏峽谷及附近海域之流場觀測。國立中山大學海洋資源學系研究所碩士論文,91頁。
扈治安、洪崇勝(2010)台灣海峽沉積物的來龍去脈:多示蹤劑法研究。研究成果報導。
許鳳心(2008)台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之硏究。臺灣大學海洋研究所碩士論文,70頁。
陳文山(1985)臺灣南部恆春半島之地質。國立臺灣大學地質研究所碩士論文,106頁。
陳汝勤(2005)台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘-總論。經濟部中央地質調查所報告,第94-26號。120頁。
陳冠宇(2006)台灣西南外海之構造與地形特徵及澎湖海底峽谷演化。國立中央大學地球物理研究所碩士論文,111頁。
陳培源(2008)台灣地質。台灣應用地質技師公會,28-12頁。
陳儀清(1997)臺灣西南外海海床表層沉積現象之研究。國立臺灣大學海洋研究所博士論文,160頁。
曾靜宜(2009)台灣西南海域陸棚及峽谷內沉積物傳輸方式。國立臺灣大學海洋研究所碩士論文。86頁。
黃安和(2011)臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究。國立中央大學地球物理研究所碩士論文,103頁。
楊燦堯(2004)台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘-海床底水與沉積物間隙水之鹽度、氣體化學特性與其同位素組成。經濟部中央地質調查所報告,第93-25-F號,61頁。
經濟部水利署(2010)中華民國九十八年台灣水文年報第二部分─河川水位及流量。482頁。
羅建育(2005)快速量測海床沉積物聲學與物理性質之新利器。海洋技術季刊,14(4), 第26-32頁。
Bouma, A.H. (1962) Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168.
Chiang, C.-S., Yu, H.-S. (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80, 199-213.
Chiang, C.-S., Yu, H.-S. (2008) Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan. Geo-Marine Lett., 28, 161-169.
Chiang, C.-S., Yu, H.-S., Chou, Y.-W. (2004) Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res., 16, 65–78.
Coughenour, C. L., Archer, A. W., Lacovara, K. J. (2009) Tides, tidalites, and secular changes in the Earth-Moon system. Earth-Science Reviews, 97, 59-79.
Dadson, S. J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., Lin, J.-C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648– 651.
Dadson, S. J., Hovius, N., Pegg, S., Dade, W. B., Horng, M.J., Chen, H. (2005) Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 110, F04016.
Deines, P. (1980) The isotopic composition of reduced organic carbon. In: P Fritz and J.Ch Fontes, Editors, Handbook of Environmental Isotope Geochemistry, 1. The Terrestrial Environment, Elsevier, 329–406.
Dickinson, W. R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G. (Ed.), Provenance of Arenites. Reidel, Dordrecht, 333–361.
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R.A., Lindberg, F. A., Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstone in relation to tectonic setting. Geol. Soc. Am. Bull. 94, 222–235.
Folk, R. L. (1974) Petrology of sedimentary rocks. Hemphill, Austin, Tx., 182.
Goldstein, J., Newbury, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., Michael, J. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd Edition. Springer Press, United States of America, 690.
Gregory, J. W. (1929) The earthquake south of Newfoundland and submarine canyons. Nature, 124, 945-946.
Hamblin, W. K., 1962. X-radiography in the study of structures in homogenous sediments. J. Sed. Petrol., 32, 201–210.
Heezen, B. C., C. L. Drake (1964) Grand Banks slump, Bull. Am. Assoc. Petrol. Geologists, 48, 221-233.
Heezen, B. C., M. Ewing (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. American Journal of Science, 250, 849-873.
Hilton, R. G., Galy, A., Hovius, N., Horng, M-J., Chen, H. (2010) The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, doi: 10.1016/ j.gca.2010.03.004
Hodgson, E. A., Doxsee, W. W. (1930) The Grand Banks earthquake, November 18, 1929, in proceeding of the 1930 Meeting of the Eastern Section, Seimological Society of America, Earthquake Notes, 2, nos. 1 and 2, 72-81.
Hsu, S.-K., Kuo,J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., Sibuet, J.-C. (2008), Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan, Terr. Atmos. Ocean. Sci., 19, 767-772.
Huh, C.-A., Lin, H.-L., Lin, S.-W., Huang, Y.-W., (2009) Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: a tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405-416.
Johnstone J. H. L. (1930) The Acadian-Newfoundland earthquake of November 18, 1929. Nova Scotian Inst. Sci. Trans. 17, 223-237.
Keith, A. (1930) The Grand Banks earthquake, in Supplement to Proceedings of the 1930 Meeting of the Eastern Section, Seismological Society of America, Earthquake Notes 2, Supplement to no. 2, 1-5.
Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In A. J. Hartley, & D. J. Prosser (Eds.), Characterization of deep marine clastic systems (pp. 31–49). Geological Society of London, Special Publication, 94.
Komar, P. D. (1998) Beach processes and Sedimentation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 544.
Lin A. T., Liu, C. S., Lin, C. C., Schnurle, P., Chen, G. Y., Liao, W.-Z., Teng, L. S., Chuang , H.-J., Wu, M.-S. (2008) Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan, Marine Geology, 255(3-4), 186-203.
Lin, A.T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y. (2009) Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479, 28-42.
Liu, C.-S., Huang, I.-L., Teng, L. S. (1997) Structural features off southwestern Taiwan. Marine Geology, 137, 305-319.
Liu, C.-S., Lundberg, N., Reed, D., Huang, I.-L. (1993) Morphological and seismic characteristics of the Kaoping submarine canyon. Marine Geology, 111, 93–108.
Liu, J. T., Lin, H.-L. (2004) Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207 (1-4), 55-81.
Liu, J. T., Liu, K. J., Huang, J. C. (2002) The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movement in southern Taiwan. Marine Geology, 181, 357–386.
Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F.P., Liu, J.T., Huang, C.-Y., You, C.-F., Huang, K.-F. (2010) Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 48–60
Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C.-Y., Selvaraj, A., Chen, C.-T. A., Zhao, Y., Siringan, F. P., Boulay, S., Chen, Z. (2008) Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149-155.
Milliman, J. D., Kao, S.-J., (2005) Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese Rivers. Journal of Geology, 113, 503-516.
Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C.S., et al., (2007) Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782.
Mulder T., Alexander, J., (2001) The physical character of subaqueous sedimentary density currents and their deposits. Sedimentology 48, 269-299.
Mulder, T., Migeon, S., Savoye, B., Fauge`res, J.-C. (2001) Inverselygraded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 21, 86–93.
Mulder, T., Syvitski, J. P. M. (1995) Turbidity currents generated at mouths of rivers during exceptional discharges to the world oceans. Journal of Geology, 103, 285-299.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J.-C., Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20 , 861–882.
Mutti E., Tinterri, R., Remacha, E., Mavilla, N., Angella , S., Fava, L. (1999) An introduction to the analysis of ancient turbiditic basins from an outcrop perspective: AAPG, Continuing Education, Course Note Series, no. 39.
Omura, A., Hoyanagi, K. (2004) Relationships between organic matter composition, depositional environments and sea-level changes in backarc basins, central Japan. Jour. Sedimentary Research , 74(40), 620-630.
Omura, A., Hoyanagi, K., Ishikawa, S. (2006) Effect of depositional processes on the origin and composition of organic matter: Examples from the Pleistocene sediments in the Choshi core, Boso Peninsula. Island Arc 15, 355–365.
Plink-Bjorklund, P., Steel, R. J. (2004) Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites, Sedimentary Geology, 165, 29–52.
Potter, P. E., Maynard, J. B., Depetris, P. J. (2005) Mud and Mudstones: Introduction and Overview. 297.
Rau, G.H.; Sweeney, R.H., Kaplan, I.R. (1982) Plankton 13C:12C ratio changes with latitude:Differences between northern and southern oceans. Deep-Sea Research, 29, 1035-1039.
Reed, D. L., Lundberg, N., Liu, C.-S., Kuo, B.-Y. (1992) Structural relations along the margins of the offshore Taiwan accretionary wedge; implication for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105-122.
Ruddiman, W. F. (2008) Earth’s Climate: Past and Future. 465.
Shanmugam, G. (2002) Ten turbidite myths. Earth-Science Reviews 58, 311-341.
Shanmugam, G. (2003) Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20, 471–491.
Shanmugam, G., Shrivastava, S.K., Bhagaban DAS. (2009) Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari basin (India): implications. Journal of Sedimentary Research, 79,736-756.
Shepard, F. P. (1954) High-Velocity Turbidity Currents, A Discussion. in E.C. Bullard, editor, A Discussion on the Floor of the Atlantic Ocean. February 28, 1953, London, England, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, Vol. 222, No. 1150, March 18, 323-326.
Stow, D. A. V., Shanmugam, G. (1980) Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient Flysch sediment. Sedimentary Geology 24, 23-42.
Stow, D. A. V., Townsend, M. R. (1990) X-ray techniques and observations on distal Bengal Fan sediments cored during Leg116. Proceedings of the Ocean Drilling Program, Scientific Results 116, 5-14.
Sun, S.-C., Liu, C.-S. (1993) Mud diapers and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan: Petrol. Geol. Taiwan, 28, 1-14.
Suppe, J. (1984) Kinematics of arc-continental collision, flipping of subcretion and back-arc spreading near Taiwna.Mem. Geol. Soc. China, 6, 21-34
Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
Tucker, M. E. (2001) Sedimentary Petrology. Blackwell Science. 262.
Wright, L. D., Nittrouer, C. A. (1995) Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18 (3), 494-508.
Yen, Jiun-Yee, and Lundberg, Neil. (2006) Sediment Compositions in Offshore Southern Taiwan and Their Relations to the Source Rocks in Modern Arc-Continent Collision Zone. Marine Geology, 225, 247-63.
Yu, H.-S. (2006) Hyperpycnal discharge of fluvial sediment to the oceans: Impact of super-typhoon Heb (1996) on Taiwanese rivers: A discussion. Jour. Geol., 114: 763-765.
Yu, H.-S., Auster, P. J., Cooper, R. A. (1993) Surface geology and biology at the head of Kao-ping canyon off southwestern Taiwan. Terr. Atmos. Ocean. Sci. 4, 441-455.
Yu, H.-S., Chiang, C.-S. (1996) Seismic and morphological characteristics of the Kaohsiung submarine canyon, southwestern Taiwan. J. Geol. Soc. China, 39, 73-86.
Yu, H.-S., Chiang, C.-S., Shen, S.-M., (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Kaoping Submarine Canyon. Jour. Mar. Sys., 76: 369-282.
Yu, H.-S., Huang, C.-S., Ku, J.-W. (1991) Morphology and possible origin of Kao-ping submarine canyon head off southwest Taiwan. Acta Oceanographica Taiwanica 27, 40-50.
Yu, H.-S., Huang, E.-C., (1998) Morphology and origin of the Shoushan submarine canyon off southwest Taiwan. J. Geol. Soc. China, 41, 565-579.
Yu, H.-S., Lee, J. T. (1993) The multi-head Penghu submarine canyon off southwestern Taiwan: Morphology and origin. Acta Oceanogr. Taiwanica, 30, 10-21.
Yu, H.-S., Wen Y.-H. (1992) Physiographic characteristics of the continental margin off southwestern Taiwan. J. Geol. Soc. China, 36, 337-351.
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2011-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明