博碩士論文 986202019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:44.223.39.67
姓名 朱澄音(Cheng-Yin Chu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Earthquake-induced Normal Modes of Free Oscillation of the Earth Observed in GNSS Networks)
相關論文
★ 利用EOF方法討論2004年蘇門答臘地震海平面的變化★ 分析46年間日長變化的小波頻譜以及彈性地球對長期海潮的反應
★ 從大地水準面及地形推估地面淹水狀況★ Spatio-Temporal Variations of Sea-Level for ENSO: Intercomparison Study of Geodetic Satellite Data
★ 地球自轉變化現象探討★ GRACE衛星重力測量和臺灣地表水循環的探討
★ 利用新竹超導重力儀分析地震對於台灣重力的影響★ 以測高衛星與重力衛星觀測南海水量的年際變化
★ 利用海洋測高衛星來觀測大地震 所造成的大地水準面變化★ GRACE的應用─以大地震及南極環流產生的重力變化為例
★ 地球物理資料分析在地震學與測地學的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們在連續 GPS 3-D 位移觀測中找尋-由 2011 年 Mw 9.0 東北大地震所激發的地球自由振盪。一項前人研究展示了這種偵測的可行性,我們在這裡進行更全面、更詳細的研究。我們使用的GPS數據來自三個獨立觀測網:(i) 日本 GEONET 觀測網,約 1000 個測站; (ii) 美國西部 PBO 觀測網,約 600 個測站; (iii) 覆蓋全球的 IGS 觀測網,約 140 個台站;以 30 秒採樣率求解並解算出 21 小時長的記錄。我們使用了多記錄疊加方法:降低噪聲方差的頻率域功率譜疊加,以及提高目標模態信噪比和抑制非目標模態的時間域疊加。我們發現最佳序列估計 (OSE) 的時間域疊加方法是最有效的,它對於頻譜中的自由震盪正交模態,清楚地顯示出高靈敏度和可偵測性。在近場的GEONET,所有激發模態都處於反節點 (anti-nodes),低於 5 mHz 的所有 spheroidal fundamental modes (0S9 – 0S43) 和部分 lower-degree overtones 以及大多數的 lower-degree toroidal fundamental modes 都在 PREM 模型特徵頻率上出現顯著的譜峰(peak)。 PBO 看到的譜峰強度較弱(遠場且通常不為反節點),但仍然可以清楚地識別fundamental modes的頻譜譜峰。全球 IGS 網由於其測站分布稀疏和測站數量少,較弱地偵測了這些模態。因此,我們的研究展示 GPS 確實記錄了微小的地震信號,可以通過多記錄疊加方法揭示之,這可能有助於研究激發normal modes的震源機制。
摘要(英) We search in the continuous GPS 3-D displacement data for the signals of the normal modes of Earth’s free oscillation that were excited by the 2011 Mw 9.0 Tohoku earthquake. A previous study has reported such a detection; we here conduct a more comprehensive and detailed study. We use GPS data from three separate networks: (i) about 1000 stations from the Japan GEONET; (ii) about 600 stations from the western USA PBO; and (iii) about 140 stations of the global IGS, and solve and form records of 21 hours long at 30-second sampling rate. We conduct various multiple-record stacking methods: the frequency-domain power spectrum stacking that reduces the variance of the noises, and the time-domain stackings that boost the SNR of target modes and suppressing the non-target modes. We find the time-domain stacking method of optimal sequence estimation (OSE) to be the most effective, which show clearly high sensitivity and detectability of the modes in the spectrum. For the near-field GEONET where all excited modes have anti-nodes, all the spheroidal fundamental modes 0S9 – 0S43 below 5 mHz and some of the lower-degree overtones as well as most of the low-degree toroidal fundamental modes show up as prominent spectral peaks against the PREM model eigenfrequencies. The PBO sees less strong (being far-field and generally off-antinodes) but still clearly identifiable spectral peaks of the fundamental modes. The global IGS network data detect barely a handful of these modes because of its sparsity and small numbers of stations. We thus demonstrate that GPS does actually record the tiny seismic signals that can be revealed by means of multiple-record stacking methods, potentially useful for studying earthquake source mechanisms exciting the normal modes.
關鍵字(中) ★ 地球自由震盪
★ 東北大地震
★ 疊加方法
★ 正交模態
★ 全球導航衛星系統
關鍵字(英) ★ Free Oscillation
★ Normal modes
★ Tohoku Earthquake
★ GNSS
★ GPS
★ stacking
論文目次 Table of Contents
ABSTRACT ............................I
TABLE OF CONTENTS ...................... III
LIST OF FIG.S ................................ V
I. INTRODUCTION................................. 1
II. DATA ....................................... 3
III. DATA STACKING TECHNIQUES ..................... 5
3.1 FREQUENCY-DOMAIN STACKING ..................... 5
3.2 TIME-DOMAIN STACKING ..................... 6
IV. RESULTS ........................... 9
4.1 FREQUENCY-DOMAIN STACKING ........................... 9
4.2 TIME-DOMAIN STACKING ........................ 12
V. DISCUSSION AND CONCLUSIONS .................. 20
REFERENCES ............................ 23
APPENDIXES ........................ 26
APPENDIX 1: THE SHS SPECTRA ........................ 26
APPENDIX 2: THE IGS SPECTRA ............................. 28
APPENDIX 3: THE PBO SPECTRA ......................... 29
APPENDIX 4: DATA STACK ............................ 32
APPENDIX 5: SEARCH FOR SPHEROIDAL OVERTONES BY SHS ..... 33
APPENDIX 6: SEARCH FOR TOROIDAL OVERTONES BY SHS ...... 37 APPENDIX 7: SEARCH FOR OVERTONES BY OSE ............... 39 APPENDIX 8: VELOCITY SPECTRA ....................... 43
參考文獻 References

Agnew DC, Berger J, Farrell WE, Gilbert JF, Masters G., Miller D. (1986) Project IDA: A decade in review, Eos Trans. AGU, 67:203–212, doi:10.1029/EO067i016p00203.
Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J. Geod. 84: 327–337, http://dx.doi.org/10.1007/s00190-010-0371-9.
Bogiatzis P., Ishii M (2014) Moment tensor of the 2011 Tohoku-Oki earthquake from Earth′s free oscillations. Bull. Seismol. Soc. Am. 104, 875-884, doi:10.1785/0120130243.
Buland, R, Berger, J., and Gilbert, F. (1979) Observations from the IDA network of attenuation and splitting during a recent earthquake. Nature, 277, 358-362.
Buland R. Gilbert F. (1978) Improved resolution of complex eigenfrequencies in analytically continued seismic spectra, Geophys. J. Int., 52, 457-470.
Bullen KE, Bolt BA (1985) An Introduction to the Theory of Seismology (4th ed.), Cambridge University Press, New York.
Chao BF, Ding H (2014) Spherical harmonic stacking for the singlets of Earth’s normal modes of free oscillation, Geophys. Res. Lett., 41, doi: 10.1002/2014GL060700.
Chao BF, Liau JR (2019) Gravity Changes Due to Large Earthquakes Detected in GRACE Satellite Data via Empirical Orthogonal Function Analysis, J. Geophys. Res., doi: 10.1029/2018JB016862.
Courtier N, Ducarme B, Goodkind J, Hinderer J, Imanishi Y, Seama N, Sun H, Merriam J, Bengert B, Smylie D. E. (2000) Global superconducting gravimeter observations and the search for the translational modes of the inner core, Phys. Earth Planet. Int., 117, 3–20.
Ding H., Chao BF (2015a) Data stacking methods for isolation of normal-mode singlets of Earth′s free oscillation: Extensions, comparisons, and applications, J. Geophys. Res. Solid Earth, 120, 5034–5050, doi:10.1002/2015JB012025.
Ding H, Chao BF (2015b) Detecting harmonic signals in a noisy time-series: the z domain Autoregressive (AR-z) spectrum, Geophys. J. Int. 201, 1287-1296.
Ding H, Chao BF (2017) Solid pole tide in global GPS and superconducting gravimeter observations: signal retrieval and inference for mantle anelasticity, Earth Planet. Sc. Lett., doi:10.1016/j.epsl.2016.11.039.
Ding H, Shen WB (2013) Search for the Slichter modes based on a new method: optimal sequence estimation, J. Geophys. Res., 118, doi:10.1002/jgrb.50344
Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model, Phys. Earth Planet. Int., 25, 297–356.
Gilbert F. Dziewonski AM (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc., 278A, 187-269.
Kanamori H, Anderson DL (1975) Amplitude of the Earth′s free oscillations and long-period characteristics of the earthquake source, J. Geophys. Res., 80(8), 1075–1078, doi:10.1029/JB080i008p01075.
Larson KM, Boden P. Gomberg J. (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300, 1421–1424.
Lentas K, Ferreira AMG, Clévédé E, Roch J, (2014) Source models of great earthquakes from ultra low-frequency normal mode data, Phys. Earth Planet. Int., 233, 41-67, https://doi.org/10.1016/j.pepi.2014.05.011
Masters G, Park J Gilbert F (1983) Observations of coupled spheroidal and toroidal modes, J. Geophys. Res., 88, 10285–10298.
Masters G., Widmer R (1995) Free Oscillations: Frequencies and Attenuations, in Global Earth Physics: A Handbook of Physical Constants, ed. Thomas J. Ahrens, Amer. Geophys. U., Washington DC.
Mitsui Y, Heki K (2012) Observation of Earth′s free oscillation by dense GPS array: After the 2011 Tohoku megathrust earthquake, Nature Sci. Rep., 2: 931, doi:10.1038/srep00931.
Munk W, Hasselmann K (1964) Super-resolution of tides, in Studies on Oceanography, Hidaka Memorial Volume, Tokyo, 339-344.
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature 475, 373–376, https://doi.org/10.1038/nature10227
Park J, et al. (2005) Earth’s free Oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science 308(5725):1139–1144. doi:10.1126/science.1112305
Park J, Amoruso A, Crescentini L, Boschi E (2008) Long-period toroidal earth free oscillations from the great Sumatra–Andaman earthquake observed by paired laser extensometers in Gran Sasso, Italy. Geophys. J. Int. 173, 887–905.
Phinney RA, Burridge R (1973) Representation of the Elastic - Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics, Geophys. J. R. astr. Soc., 34, 451-487, 1973, doi: 10.1111/j.1365, 246X.1973.tb02407.x.
Smylie DE, Hinderer J, Richter B, Ducarme B (1993) The product spectra of gravity and barometric pressure in Europe, Phys. Earth Planet. Interior, 80, 135-157.
Yan R, Woith H, Wang RJ, Zhang Y (2016) Earth′s free oscillations excited by the 2011 Tohoku Mw 9.0 earthquake detected with a groundwater level array in mainland China, Geophysical Journal International, 206, , 1457–1466, https://doi.org/10.1093/gji/ggw213
Yuan L, Chao BF (2012) Analysis of tidal signals in surface displacement measured by a dense continuous GPS array, Earth Planet. Sc. Lett., 255-261, doi: 10.1016/j.epsl.2012.08.03.
Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102: 5005–5017, http://dx.doi.org/10.1029/96JB03860.
指導教授 趙丰(Benjamin F. Chao) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明