博碩士論文 986202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:34.207.78.157
姓名 黎歐(Leo Armada)  查詢紙本館藏   畢業系所 地球系統科學國際研究生博士學位學程
論文名稱 馬尼拉隱沒系統地殼構造與變形
(Crustal structure and deformation in the Manila subduction zone)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 馬尼拉隱沒系統地殼構造與變形

黎歐

地球系統科學
國際研究生博士學位學程博
國立中央大學

中文摘要

由於南中國海盆地隱沒到呂宋島(菲律賓)西邊之下,而形成活動聚合板塊邊緣的馬尼拉海溝。本研究區域和其他隱沒區域類似,是可能產生大地震、海底山崩和海嘯的高風險區域,而這些自然災害會對附近區域的人口和基礎建設造成極大的威脅。因此,研究現今馬尼拉隱沒系統的地殼構造以及變形顯得非常重要。本研究主要利用由海研五號(R/V Ocean Researcher 5)所收集的多頻道反射震測資料以及高解析水深資料所作研究的結果。
  本研究區域隱沒系統在聚合界面以及弧前區域有著不同的變形機制。透過海上震測資料以及水深資料的分析顯示地形和變形機制上大致以北緯17度為一界線來區分,海底地形的變化是因海洋岩石圈中的差異造成,使得馬尼拉海溝和其弧前區域在此界線上呈現著不同的變形機制,如因南海海盆擴張導致海山、海脊、沉積物供給量、重新活動的構造和斷層等。馬尼拉海溝北段主要被歸類為增積型的聚合邊界(寬廣且平緩的增積前緣),而南段則主要是侵蝕型的聚合邊界(狹窄且陡峭的增積前緣),故馬尼拉海溝南段陡峭的坡度使得此區域較容易發生海底崩塌(slope failures)和塊體運動(mass wasting)。此一界線(17°N)也將弧前盆地分隔成北呂宋海槽(北段弧前盆地)和西呂宋海槽(南段弧前盆地),相較於沉積物較少卻有大型斷層的北段弧前盆地,南段弧前盆地因擁有大量的沉積物而產生較快速的應力累積。進一步的構造影像分析顯示,馬尼拉海溝南段侵蝕型的聚合邊界因過去海山的隱沒曾造成大量的海底崩塌現象,因此推斷這個古海底崩塌事件可能在鄰近的區域造成海嘯。資料顯示對比過去數值研究模型,停止張裂的中洋脊(Scarborough Seamount Chain)在北緯16度附近似乎尚未開始隱沒。
  海底山隱沒至上覆板塊下時,可能會隨著向下的隱沒作用而造成弧前地區的破裂,而隱沒接觸區域附近的破裂網絡(network)可能因此限制未來地震的破裂區域。雖然也有可能發生一些較小規模的地震,但是此現象使得馬尼拉海溝南段發生大地震(Mw≥9) 的機率變得較低。馬尼拉南部地殼受應力形成壓縮變形並與菲律賓斷層帶走向滑動的斷層重疊,在此區域的西北東南走向的海脊和海盆與剪力(shearing)以及較陡峭的增積岩體前緣有關係,且有助於造成此馬尼拉海溝區的海底邊坡不穩定。
摘要(英) Crustal structure and deformation in the Manila subduction zone

Leo Armada
Taiwan International Graduate Program- Earth System Science
National Central University


ABSTRACT


The Manila trench is the active convergent margin where the South China Sea (SCS) basin is being subducted beneath the western portion of Luzon Island (Philippines). The deformation in the study area, as in other subduction zones, is associated with natural hazards like large mega-thrust earthquakes, submarine landslides and tsunamis. These processes pose great risks to populations and infrastructures in surrounding regions. In this regard, it is important to study the present crustal structure and ongoing deformation in the Manila subduction zone. This dissertation presents research results derived from new multi-channel seismic reflection (MCS) data (collected using the Ocean Researcher 5) and high quality bathymetry.

The subduction zone is characterized by varying deformation patterns in the subduction interface and the overlying fore-arc region. Analyses of the marine MCS and bathymetric datasets indicate a distinct morphological and deformational boundary near 17°N latitude. Differences in the nature of the subducting oceanic lithosphere (i.e. seafloor relief related to seamounts and ridges, sediment supply, reactivated features and faults associated with the SCS opening) cause variations in the deformation observed across this boundary in the Manila trench and fore-arc. The northern segment is classified as an accretionary margin (with a wide frontal wedge with gentle slope) while the southern segment is mainly an erosive margin (with a narrow and steep frontal wedge). Consequently, the steep frontal wedge in the southern segment is prone to submarine slope failures and mass wasting. The boundary also separates the fore-arc basin into the North Luzon Trough (northern fore-arc basin) and the West Luzon Trough (southern fore-arc basin). Abundant sediments in the southern fore-arc basin and less sediments in the northern fore-arc basin imply faster strain loading in the southern segment compared to the northern segment of the subduction mega-thrust. Furthermore, detailed images of the structure indicate that the erosive margin in the southern segment has a history of seamount subduction with associated large submarine slope failures. The inferred ancient submarine mass wasting events may have caused tsunamis in adjacent areas. The data also show that the Scarborough Seamount Chain (extinct mid-ocean ridge) is not yet subducted near 16°N latitude, contrary to previous models.

Seamounts in the subducting oceanic lithosphere may induce fracturing of the overlying fore-arc crust as it progresses downward. The fracture networks near the subduction interface may then limit the rupture area of future mega-thrust earthquakes. This will lead to the low probability of great subduction earthquakes (Mw≥9) in the southern segment of the Manila trench, although intermediate sized earthquakes should not be discounted. The upper crustal structure of the southern end of the Manila trench is characterized by compressive deformation. It is also overlapping with strike-slip (shear) motion related to the Philippine Fault Zone. The NW-SE oriented ridge and basin morphologies related to shearing and the steep frontal wedge are conducive to submarine slope failure in this portion of the Manila trench.
關鍵字(中) ★ 隱沒系統
★ 海山
★ 弧前海盆
★ 地殼構造
★ 反射震
★ 馬尼拉海溝
★ 南中國海
關鍵字(英) ★ subduction zone
★ seamount
★ forearc basin
★ tectonics
★ seismic reflection
★ Manila Trench
★ South China Sea
論文目次 Table of Contents

English Abstract.………….……………………………………………………………………………...............i
Chinese Abstract………….……………………………………………………………………………............iii
Acknowledgement…………………………………………………………………………………………........iv
Table of Contents……………………………………………………………………………………...............vi
List of Figures…………………………………………………………………………………………..............viii

Chapter 1. Introduction……………………………………………………………………………...............1
1.1. Research Motivation and Objectives……………………………………………………………….…….....1
1.2. Review of Related Literature…………….…………………………………………………………….………..2
1.2.1. Tectonic setting of the Philippines and the western Pacific…………………………..2
1.2.2. Evolution of the South China Sea, Manila Trench and the Luzon arc……….….5

Chapter 2. Data and Methodology………………………………………………………………….….…13
2.1. Seismic Reflection Data…………………………………………………………………………….….…………13
2.1.1. Data Acquisition………………………………………………………………………………….……..13
2.1.2. Data Processing………………………………………………………………………………….………13
2.2. Bathymetry…………….………………………….…………………………………………………….……………..14
2.3. Supplementary Data………………………….…………………………………………………….……………..14

Chapter 3. Results and Discussion………………………….………………………….………….…….16
3.1. Seafloor morphology in the Manila subduction zone ………….…………………………………16
3.2. Seismic reflection images across the Manila subduction zone ….………………………….23
3.3. Seamount subduction and forearc deformation in the Manila trench ………………….40
3.4. Subduction of an aseismic ridge and the termination of a forearc basin……………….41

Chapter 4. Synthesis and Conclusions…………………………………………………………………46

Bibliography………………………………………………………………………………………………………….48

Appendices……..……………………………………………………………………………………………………..56
Appendix A. List of MCS Survey Lines…………………………………….………..………………………...56
Appendix B. NNR-MORVEL56 predicted velocities....……..……………………………...............58
Appendix C. Multi-channel seismic reflection profile plots……………………...………………..59
參考文獻 Bibliography

Amante C., and Eakins, B.W., 2009. ETOPO11 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, [accessed 07/04/2015].
Arfai, Jashar, Dieter Franke, Christoph Gaedicke, Rudiger Lutz, Michael Schnabel, Stefan Ladage, Kai Berglar, Mario Aurelio, Jennie Montano, Nicole Pellejera, 2011. Geological evolution of the West Luzon Basin (South China Sea, Philippines), Marine Geophysical Research, 32, 349–362, DOI 10.1007/s11001-010-9113-x.
Argus, D. F., R. G. Gordon, and C. DeMets, 2011. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame, Geochemistry Geophysics Geosystem, 12, Q11001, doi: 10.1029/2011GC003751.
Armada, L.T., Hsu, S.-K., Ku, C.-Y., Doo, W.-B., Wu, W.-N., Dimalanta, C.B., Yumul, G.P. Jr., 2012. Possible northward extension of the Philippine Fault Zone offshore Luzon Island (Philippines), Marine Geophysical Research, 33 (4), 369-377.
Aurelio, M. A., 2000. Shear partitioning in the Philippines: constraints from Philippine Fault and global positioning system data. Island Arc 9, 584–597.
Barckhausen, U., et al., 2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading, Marine and Petroleum Geology, http://dx.doi.org/ 10.1016/j.marpetgeo.2014.02.022.
Bautista et al., 2001. A new insights on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339, 279-310.
Becker, J. J. and Sandwell, D. T., 2007. SRTM30_PLUS: Data fusion of SRTM land topography with measured and estimated seafloor topography (Version 3.0). http://topex.ucsd.edu/WWW_html/srtm30_plus.html, [accessed 11/08/2014].
Béjar-Pizarro M., Socquet A., Armijo R., Carrizo D., Genrich J., Simons M., 2013. Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, doi: 10.1038/ngeo1802.
Briais, A., Patriat P. and Taponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in South China Sea: Implications for the Tertiary tectonics of Southeast Asia, Journal of Geophysical Research 98, 6299–6328.
Chen, P.-F., E.A. Olavere, C.-W. Wang, B. C. Bautista, R.U. Solidum Jr., W.-T. Liang, 2015. Tectonophysics, Volumes 640–641, Pages 70-79.
Clift, P. and Vannuchi, P., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42, 1–31.
Davis, D., J. Suppe and F.A. Dahlen, 1983. Mechanics of fold-and-thrust belts and accretionary wedges, Journal of Geophysical Research, 88, 1153-1172.
Deschamps, A., Lallemand, S., 2003. Geodynamic setting of Izu–Bonin–Mariana
boninites. In: Larter, R.D., Leat, P.T. (Eds.), Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes, vol. 219. Geological Society Special Publications, London, pp. 163–185.
Defant, M.C., R.C. Maury, E.M. Ripley, M.D. Feigenson, and D. Jacques, 1991. An Example of Island-Arc Petrogenesis: Geochemistry and Petrology of the Southern Luzon Arc, Philippines. Journal of Petrology, Vol. 32, No. 3, pages 455-500, doi: 10.1093/petrology/32.3.455.
Defant. M. J., de Boer, J. Z„ and Oies, D., 1988. The western Central Luzon volcanic arc, the Philippines: Two arcs divided by rifling. Tectonophysics, v. 145, p. 305-317.
Defant, M.J., D. Jacques, R. C. Maury, J.D. Boer and J.-L. Joron, 1989. Geochemistry and tectonic setting of the Luzon arc, Philippines. Geological Society of America Bulletin, Vol. 101, no.5; pages 663-672, doi: 10.1130/0016-7606(1989)101<0663: GATSOT>2.3.CO; 2.
Dominguez, S., J. Malavieille, and S. E. Lallemand, 2000. Deformation of accretionary wedges in response to seamount subduction- Insights from sandbox experiments. Tectonics. Vol. 19, No. 1, pages 182-196.
Doo, W.-B., C.-L. Lo, H. Kuo-Chen, D. Brown, and S.-K. Hsu (2015), Exhumation of serpentinized peridotite in the northern Manila subduction zone inferred from forward gravity modeling, Geophysical Research Letters, 42, doi: 10.1002/2015GL065705.
Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852. http://dx.doi.org/10.1029/JB086iB04p02825.
Ekström, G., Nettles, M., Dziewonski, A.M., Nettles, M., 2012. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201, 1–9. http://dx.doi.org/10.106/j.pepi.2012.04.002.
Engdahl, E.R., van der Hilst, R., Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88, 722–743.
Fan, J.-K., S.-G. Wu and G. Spence, 2014. Tomographic evidence for a slab tear induced by fossil ridge subduction at Manila Trench, South China Sea, International Geology Review, doi: 10.1080/00206814.2014.929054.
Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, Journal of Geophysical Research - Solid Earth, 118, 5920–5938, doi: 10.1002/2013JB010466.
Fuller, C. W., S. Willett, and M. T. Brandon, 2006. Formation of fore-arc basins and their influence on subduction zone earthquakes, Geology, 34(2), 65 – 68, doi:10.1130/G21828.1.
Fuller, J., Fernandez, M., Zeyen, H., 2008. FA2BOUG - A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone. Computers & Geosciences, Volume 34, Issue 12, pp. 1665-1681, ISSN: 0098-3004. DOI: 10.1016/j.cageo.2008.02.018.
Geersen, J. et al., 2015. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area. Nature Communications 6:8267 doi: 10.1038/ncomms9267.
Gutscher, M.A., N. Kukowski, J. Malavieille, and S. Lallemand, 1998. Material transfer in accretionary wedges from analysis of a systematic series of analog experiments, Journal of Structural Geology, 20, 407-416.
Harders, R., Cesar R. Ranero, and Wilhelm Weinrebe, 2014. Characterization of Submarine Landslide Complexes Offshore Costa Rica: An Evolutionary Model Related to Seamount Subduction in Submarine Mass Movements and Their Consequences edited by Sebastian Krastel, Jan-Hinrich Behrmann, David Völker, Michael Stipp, Christian Berndt, Roger Urgeles, Jason Chaytor, Katrin Huhn, Michael Strasser, Carl Bonnevie Harbitz, doi: 10.1007/978-3-319-00972-8.
Hayes, D.E., Lewis, S.D., 1984. A geophysical study of the Manila Trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research 89, 9171–9195.
Hayes, D. E. and W. J. Ludwig (1967). The Manila Trench and West Luzon Trough--II. Gravity and magnetics measurements. Deep Sea Research and Oceanographic Abstracts, 14, 545-560.
Hsu, S.-K. and J.-C. Sibuet, 1995. Is Taiwan the result of arc-continent or arc-arc collision? Earth and Planetary Science Letters, Volume 136, Issues 3–4, December 1995, Pages 315-324, ISSN 0012-821X, doi.org/10.1016/0012-821X(95)00190-N.
Hsu, Y.-J. , Shui-Beih Yu, Teh-Ru Alex Song, Teresito Bacolcol, 2012. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. Journal of Asian Earth Sciences, Volume 51, 98-108, doi.org/10.1016/j.jseaes.2012.01.005.
Hsu, S.-K., L.T. Armada, Y.-C. Yeh, C.-H. Tsai, W.-B. Doo, C.-L. Lo, 2015. Excessive magma supply in the South China Sea at the Oligocene/Miocene boundary and the geodynamic consequence. Journal of Asian Earth Science (submitted).
Kodaira, S., T. Iwasaki, T. Urabe, T. Kanazawa, F. Egloff, J. Makris, and H. Shimamura, 1996. Crustal structure across the middle Ryukyu Trench obtained from ocean bottom seismographic data, Tectonophysics, 263, 39 – 60.
Kodaira, S., Iidaka, T., Kato, A., Park, J.-O., Iwasaki, T., Kaneda, Y., 2004. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304, 1295–1298.
Ku, C.-Y. and Hsu, S.-K., 2007. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics. Volume 466, Issues 3–4, Pages 229-240, doi.org/10.1016/j.tecto.2007.11.012.
Lallemand, S.E., J. Malavieille and S. Calassou, 1992. Effects of oceanic ridge subduction on accretionary wedges: Experimental modeling and marine observations, Tectonics, 11, 1301-1313.
Lallemand, S.E., 1995. High rates of arc consumption by subduction processes: some consequences. Geology 23 (6), 551–554.
Lay, T. et al., 2005. The great Sumatra–Andaman earthquake of 26 December 2004. Science 308, 1127–1133.
Lewis, S.D., Hayes, D.E., 1984. A geophysical study of the Manila Trench, Luzon, Philippines, 2. Fore arc basin structural and stratigraphic evolution. Journal of Geophysical Research 89, 9196–9214.
Lin, J.-Y., 2015. Megathrust earthquake potential of the Manila subduction system: revealed by the seismic moment tensor element Mrr. Terrestrial Atmospheric and Oceanic Sciences, doi: 10.3319/TAO.2013.04.29.01 (TC).
Lin, J.-Y. and C.-L. Lo, 2013. Earthquake-induced crustal gravitational potential energy change in the Philippine area, Journal of Asian Earth Sciences, Volume 66, Pages 215-223, ISSN 1367-9120, doi.org/10.1016/j.jseaes.2013.01.009.
Liu, Z., C. Colin, X. Li, Y. Zhao, S. Tuo, Z. Chen, F. P. Siringan, J. T. Liu, C.-Y. Huang, C.-F. You and K.-F. Huang (2010). Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 48-60.
Ludwig, W. J., D. E. Hayes and J. I. Ewing (1967). The Manila Trench and West Luzon Trough--I. Bathymetry and sediment distribution. Deep Sea Research and
Oceanographic Abstracts, 14, 533-544.
Ludwig, W. J. (1970). The Manila Trench and West Luzon Trough--III. Seismic-refraction measurements. Deep Sea Research and Oceanographic Abstracts, 17, 553-562,
IN13, 563-571.
Malavieille, J., C. Larroque, S.E. Lallemand and J.F., Stephan, 1991. Experimental modelling of accretionary wedges, Terra Nova, 3, 367.
Metois, M., A. Socquet, C. Vigny, D. Carrizo, S. Peyrat, A. Delorme, E. Maureira, M.-C. Valderas-Bermejo, I. Ortega, 2013.Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophysical Journal International 194, 1283–1294.
Michel, G. W., et al., 2001. Crustal motion and block behaviour in SE-Asia from GPS measurements, Earth Planet. Sci. Lett., 187, 239–244.
Moore, G. F., N. L. Bangs, A. Taira, S. Kuramoto, E. Pangborn, and H. J. Tobin, 2007. Three-dimensional splay fault geometry and implications for tsunami generation, Science, 318, 1128–1131, doi:10.1126/science.1147195.
Mountjoy, J.J., and P. M. Barnes, 2011. Active upper plate thrust faulting in regions of low plate interface coupling, repeated slow slip events, and coastal uplift: Example from the Hikurangi Margin, New Zealand, Geochemistry Geophysics Geosystems 12, Q01005, doi:10.1029/2010GC003326.
Nedimovic, M. R., Hyndman, R. D., Ramachandran, K. & Spence, G. D., 2003. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature 424, 416−420.
Nixon, M. F., and J. L. H. Grozic, 2007. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification, Canadian Geotechnical Journal, 44, 314–325, doi: 10.1139/T06-121.
Obayashi, M., J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, and Y. Gao, 2013.Finite frequency whole mantle P-wave tomography: Improvement of subducted slab images, Geophysical Research Letters, 40, 1–6, doi:10.1002/2013GL057401.
Pautot, G. and Rangin, C., 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines), Earth and Planetary Science Letters, 92, 57-69.
Peltzer, G., and P. Tapponnier, 1988. Formation and evolution of strike-slip Faults, rifts and basins during the India-Asia collision: An experimental approach, Journal of Geophysical Research, 93, 15095-15117.
Philippine Institute of Volcanology and Seismology (2015). Distribution of active faults and trenches in the Philippines Map. http://www.phivolcs.dost.gov.ph/index. php=article&id=78&Itemid=500024 [accessed 09/14/2015].
Ramos, N. T., Hiroyuki Tsutsumi, 2010. Evidence of large prehistoric offshore earthquakes deduced from uplifted Holocene marine terraces in Pangasinan Province, Luzon Island, Philippines, Tectonophysics, Volume 495, Issues 3–4, Pages 145-158, ISSN 0040-1951, doi: org/10.1016/j.tecto.2010.08.007.
Ranero, C. R., R. von Huene, E. R. Flueh, M. Duarte, D. Baca, and K. McIntosh, 2000. A cross section of the convergent Pacific margin of Nicaragua, Tectonics, 19(2), 335–357.
Rangin, C., Stephan, J.F., Blanchet, R., Baladad, D., Bouysee, P., Chen, Min Pen, Chotin, P., Collot, J.Y., Daniel, J., Drouhot, J.M., Marchadier, Y., Marsset, B., Pelletier, B., Richard, M. and Tardy, M., 1988. Seabeam survey at the southern end of the Manila trench. Transition between subduction and collision processes, offshore Mindoro Island, Philippines. Tectonophysics, 146:261-278.
Rangin, C., X. Le Pichon, S. Mazzotti, M. Pubellier, N. Chamot-Rooke, M. Aurelio, A. Walpersdorf, R. Quebral, 1999. Plate convergence measured by GPS across the Sundaland/Philippine Sea plate deformed boundary: the Philippines and eastern Indonesia. Geophysical Journal International, 139 pp. 296–316.
Sevilla, W., 2011. Seismic velocity variations under island arcs: Examples from the Philippines and Montserrat (Lesser Antilles). PhD Dissertation, Pennsylvania State University, USA, 175 pp.
Shephard, F.P., 1981. Abra River delta and northward continuation of the Philippine Great Fault. Marine Geology, 41, 103—111.
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research, 110, B08402, doi: 10.1029/2004JB003251.
Tapponnier, P., G. Peltzer,a nd R. Armijo, 1986. On the mechanics of the collision between India and Asia, in Collision Tectonics edited by M.P. Coward and A. C. Ries, Geological Society Special Publication, 19, 115-157.
Tapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo, and P. Cobbold, 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, 10, 611-616.
Vannucchi, P., C. R. Ranero, S. Galeotti, S. M. Straub, D. W. Scholl, and K. McDougall-Ried, 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones, Journal of Geophysical Research, 108(B11), 2511, doi: 10.1029/2002JB002207.
von Huene, R., C. R. Ranero, W. Weinrebe, and K. Hinz, 2000. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism, Tectonics, 19, 314–334.
von Huene, R., W. Weinrebe, F. Heeren, 1999. Subduction erosion along the North Chile margin, Journal of Geodynamics, Volume 27, Issue 3, Pages 345-358, ISSN 0264-3707, doi.org/10.1016/S0264-3707(98)00002-7.
Wang, K. and Bilek, S. L., 2011. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822.
Wang, K., and J. He, 1999. Mechanics of low-stress forearcs: Nankai and Cascadia, Journal of Geophysical Research, 104, 15,191–15,205.
Wang, K., and Y. Hu, 2006. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, Journal of Geophysical Research, 111, B06410, doi: 10.1029/2005JB004094.
Wessel P., Smith W.H.F., Scharroo R., et al., 2013. Generic Mapping Tools: improved version released. Eos Trans AGU. 94:409–10, doi: 10.1002/2013EO450001.
Yan, Q.S., P. Castillo, X.F. Shi, L.L. Wang, L. Liao, J.B. Ren, 2015. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos, 218–219, pp. 117–126.
Yang, H., Y. Liu, and J. Lin, 2013. Geometrical effects of a subducted seamount on stopping megathrust ruptures, Geophysical Research Letters, 40, doi:10.1002/grl.50509.
Yang, T.F., T. Lee, C.-H. Chen, S.-N. Cheng, U. Knittel, R.S. Punongbayan, A.R. Rasdas, 1996. A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, Volume 258, Pages 85-101, ISSN 0040-1951, doi.org/10.1016/0040-1951(95)00180-8.
Yeh, Y.-C., J.‐C. Sibuet, S.‐K. Hsu, and C.‐S. Liu, 2010. Tectonic evolution of the Northeastern South China Sea from seismic interpretation, Journal of Geophysical Research, 115, B06103, doi:10.1029/2009JB006354.
Yu, S.-B., Y.-J. Hsu, T. Bacolcol, C.-C. Yang, Y.-C. Tsai, R. Solidum Jr., 2013. Present-day crustal deformation along the Philippine Fault in Luzon, Philippines. Journal of Asian Earth Sciences, Volume 65, Pages 64-74, ISSN 1367-9120, http://dx.doi.org/10.1016/j.jseaes.2010.12.007.
Yumul Jr., G.P., C.B. Dimalanta, V.B. Maglambayan, E.J. Marquez, 2008. Tectonic setting of a composite terrane: a review of the Philippine island arc system. Geoscience Journal, 12, pp. 7–17.
Zeumann, S., and A. Hampel, 2015. Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins, Tectonics, 34, 1769–1791, doi: 10.1002/2015TC003867.
指導教授 許樹坤(Hsu Shu-Kun) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明