博碩士論文 986203005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.230.154.129
姓名 林彥碩(Yen-Shuo Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 藉由電腦視覺自動偵測土石流
(Automatic Debris Flow Detection by Computer Vision)
相關論文
★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)★ 高頻譜影像物質含量估計運用加權最小 平方法
★ 利用X光乳房攝影產生之紋理特徵影像在腫瘤偵測上之研究★ 高光譜影像雜訊模式估計
★ 利用高光譜影像作異常物偵測★ 無參數加權特徵萃取對遙測及醫學影像目標偵測的應用
★ 利用電腦自動化對數值高程模型作線形偵測★ 高光譜影像異常物偵測與識別之平行運算方法與其效能評估
★ 利用多光譜影像的光譜與空間資訊結合數學型態學進行海洋油汙偵測★ 低解析度車牌視訊之強化與辨識
★ 利用遙測影像自動萃取校正點★ 新的影像融合演算法應用於多光譜遙測影像
★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測★ 可調式都卜勒主動雷達校正器之改良研究
★ 基於色彩校正的遙測影像變遷偵測★ 利用固定式攝影機即時偵測土石流
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 每年夏天都會有數個颱風侵襲台灣,伴隨著強風及豪雨,造成生命財產上的損害。而最近幾年,豪雨過後的土石流災害更是嚴重。2009年的莫拉克颱風引發土石流,造成高雄縣甲仙鄉小林村滅村,數百人遭到活埋。經濟損失高達新台幣195 億元。2001 年桃芝颱風的土石流導致148 人死亡,失蹤。土石流發生的機率是由一個區域的雨量來決定,但使用者無法確切知道土石流是否真的發生。當土石流發生,通常造成很嚴重的損失和很多人死亡。確切知道土石流的發生,這是一件很重要的事。台灣政府在土石流易發生的區域架設攝影機,以掌握土石流的動態資訊。但這些設備僅僅是記錄這些資訊。本論文嘗試利用這些影像,建立一個演算法來自動判斷土石流是否發生。
這篇論文由兩個部分組成,偵測和辨識。藉由適應性的背景混合模型(adaptive background mixture models),我們得以知道攝影機監測的範圍內是否有物體移動。偵測到移動物後,需要辨識它是否是土石流。本論文選取三組特徵資訊,紋理資訊(texture information),色彩直方圖(color histogram)和鄰域顏色矩直方圖(neighborhood color moment histogram)。利用這三組特徵來代表背景和土石流。背景是選取測試影片的一組背景做萃取,土石流是用其他影片們的土石流資料。接著利用粒子群聚演算法(particle swarm optimization, PSO) 來訓練最能分別代表背景和土石流的數據。再萃取測試影片的特徵,並用完全限制最小平方差(fully constrained least squares, FCLS) 來比對,看現在的移動物是比較接近背景還是土石流。最後用模糊決策法(fuzzy decision method)來統合三組特徵,自動判斷結果。
摘要(英) Several typhoons strike Taiwan in the summer season every year. The strong breeze and heavy rain sometimes cause casualties and damages. In recent years, the loss by debris flow becomes more serious. The debris flow caused by typhoon Morakot in 2009 buried entire village of Shiaolin in Kaohsiung and killed hundreds of people. The economical loss is about 19.5 billion NTD. The debris flow caused by typhoon Toraji in 2001 kills 148 people. Government in Taiwan announces the possibility of debris flows by the amount of rain in the region. However we do not actually know the occurrence of debris flow, which is very important information. To monitor the debris flows, Government in Taiwan builds some charge-coupled device (CCD) camera in the region which the debris flow occurs often. However these systems just record the video without any processing. In this study, we attempt to build an automatic detect and recognize algorithm for debris flow from the video.
This study is composed of the detection and the recognition. The moving objects are first detected by adaptive background mixture models. And then these detected objects are recognized by the following procedure. Three types feature vectors is used to represent the debris flow and the background, which are texture features, color histogram and neighborhood color moment histogram. The feature vectors of background and debris flow are extracted from the background of testing video and other debris flow videos respectively. Particle swarm optimization (PSO) is then applied to select the best feature vectors of debris flow and background. We classify the feature vectors of testing video into the composition percentages of debris flow and background by fully constrained least squares (FCLS). Finally, the decision of debris flow is made automatically by fuzzy decision method.
關鍵字(中) ★ 土石流
★ 識別
★ 偵測
★ 影像處理
★ 電腦視覺
關鍵字(英) ★ computer vision
★ debris flow
★ recognition
★ detection
★ image processing
論文目次 摘要 i
Abstract iii
Contents v
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis method and Flow chart 1
1.3 Thesis framework 3
Chapter 2 Detection 4
2.1 Adaptive background mixture models 5
2.1.1 Mixture of Gaussian 5
2.1.2 Background Model Estimation 7
2.1.3 Update the models 8
2.2 Morphology 11
2.2.1 Connected component labeling 11
2.2.2 Closing 12
Chapter 3 Recognition 18
3.1 Texture 19
3.2 Color histogram and moments 22
3.2.1 Color histogram 23
3.2.2 Neighborhood Color Moments 24
3.3 Particle swarm optimization 25
3.4 Fully constrained least squares 26
3.4.1 Linear mixture model 26
3.4.2 Least squares (LS) projection classifier 26
3.4.3 Sum-to-one constrained least square (SCLS) method 27
3.4.4 Nonnegative constrained least squares (NCLS) method 27
3.4.5 Fully constrained least squares (FCLS) method 28
3.5 Fuzzy decision method 29
Chapter 4 Experimental Result 30
4.1 Experimental result of detection 30
4.2 Experimental result of recognition 43
4.3 Experimental result of this study 54
4.4 Noise 55
Chapter 5 Conclusions and Future Works 61
5.1 Conclusions 61
5.2 Future works 62
References 64
參考文獻 [1] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., 1999, vol. 2.
[2] Chen Q., Tai X. Y., and Ba T. E., “Gastroscope image retrieval based on histogram of neighborhood color moments,” Computer Engineering and Applactions, vol. 11, no. 44, pp. 205-207, 2008.
[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on, 1995, vol. 4, p. 1942–1948.
[4] D. C. Heinz, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 39, no. 3, p. 529–545, 2001.
[5] W.-J. Wang, Fuzzy Introduction. Taiwan: Chuan Hwa, 2005.
[6] M. Fathy and M. Y. Siyal, “An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis,” Pattern Recognition Letters, vol. 16, p. 1321–1330, Dec. 1995.
[7] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target classification and tracking from real-time video,” pp. 8-14, Oct. 1998.
[8] D. J. Dailey, F. W. Cathey, and S. Pumrin, “An algorithm to estimate mean traffic speed using uncalibrated cameras,” Intelligent Transportation Systems, IEEE Transactions on, vol. 1, no. 2, p. 98–107, 2000.
[9] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1-3, pp. 185-203, Aug. 1981.
[10] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision, vol. 12, no. 1, pp. 43-77, 1994.
[11] P. Soille, Morphological Image Analysis: Principles and Applications. Springer-Verlag Telos, 1999.
[12] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. 1. Addison-Wesley, 1991.
[13] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, p. 532–550, Jul. 1987.
[14] E. R. Dougherty, An Introduction to Morphological Image Processing. SPIE-International Society for Optical Engine, 1992.
[15] M. Sonka, V. Hlavac, and R. Boyle, “Image processing, analysis, and machine vision second edition,” International Thomson, 1999.
[16] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 3, no. 6, pp. 610-621, 1973.
[17] M. Partio, B. Cramariuc, M. Gabbouj, and A. Visa, “Rock texture retrieval using gray level co-occurrence matrix,” in Proc. of 5th Nordic Signal Processing Symposium, 2002, vol. 75.
[18] I. Christoyianni, E. Dermatas, and G. Kokkinakis, “Neural classification of abnormal tissue in digital mammography using statistical features of the texture,” in Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99. The 6th IEEE International Conference on, 1999, vol. 1, p. 117–120.
[19] R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of the IEEE, vol. 67, no. 5, pp. 786-804, 1979.
[20] C.-F. Lee, S.-Y. Chang, and Z.-P. Lin, “Infrared Thermal Image Applied on Debris Flow Monitoring,” Journal of Chinese Soil and Water Conservation, vol. 35, no. 3, pp. 261-274, 2004.
[21] F. W. Billmeyer Jr, “Principles of color technology,” University of California, Los Angeles, 1981.
[22] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.
[23] R. B. Singer and T. B. McCord, “Mars-Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance,” in Lunar and Planetary Science Conference Proceedings, 1979, vol. 10, pp. 1835-1848.
[24] Y. E. Shimabukuro and J. A. Smith, “The least-squares mixing models to generate fraction images derived from remote sensing multispectral data,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 29, no. 1, pp. 16-20, 1991.
[25] C. I. Chang, X. L. Zhao, M. L. G. Althouse, and J. J. Pan, “Least squares subspace projection approach to mixed pixel classification for hyperspectral images,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 36, no. 3, pp. 898-912, 1998.
[26] J. J. Settle and N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” International Journal of Remote Sensing, vol. 14, no. 6, pp. 1159-1177, 1993.
[27] Te-Ming Tu, Chin-Hsing Chen, and Chein-I Chang, “A posteriori least squares orthogonal subspace projection approachto desired signature extraction and detection,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 35, no. 1, pp. 127-139, Jan. 1997.
[28] C. I. Chang and D. Heinz, “Subpixel spectral detection for remotely sensed images,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 3, p. 1144–1159, 2000.
[29] K. H. Haskell and R. J. Hanson, “An algorithm for linear least squares problems with equality and nononegativity constraints generalized,” Math. Prog., vol. 21, p. 98–118, 1981.
指導教授 任玄(Hsuan Ren) 審核日期 2011-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明