博碩士論文 986203022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:52.14.126.74
姓名 黃俊翰(ChunHan Haung)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 利用強場電磁波產生高能質子束的數值模擬研究
(Simulation Study of Generation of the Energetic Proton Beam Induced by High-Field Electromagnetic Waves in overdense plasmas)
相關論文
★ 第23太陽週期之前半期大尺度日珥暗紋之研究★ 非週期不均勻電漿系統中靜電電漿動力數值模擬碼之設計與應用
★ 利用台灣日震觀測網的太陽影像資料研究 太陽差動自轉的變化情形★ Simulation and Theoretical Study of the Kelvin-Helmholtz Instabilityin the MHD Plasmas
★ 太陽風中旋轉不連續面及非線性艾爾文波之數值模擬研究★ 無碰撞電漿中靜電雙流不穩定之數值模擬研究
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 靜電激震波之電漿動力數值模擬與理論研究
★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究★ 雷射波形對相位穩定質子加速器運作的影響
★ 雷射與薄膜作用產生高能質子束之模擬與理論研究★ 磁流體力學中電漿團加速與磁場重聯率變化成因之數值模擬研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 太空電漿中跨尺度快波中速波與慢波的頻散關係之研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 極端AU指數事件之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 「太陽高能粒子 (Solar energetic particles, SEPs)」是經由太陽閃焰獲得能量的正離子與電子。這些高能粒子能量範圍相當地廣,可由幾萬電子伏特到十億電子伏特。其中,能量大於約四千萬電子伏特的高能粒子,會對衛星的電子儀器、探測船、以及太空人的生命造成危害。本論文透過一維「粒子模擬碼(Particle-in-Cell)」模擬研究「輻射壓力加速 (radiation pressure acceleration, RPA)」機制中的「滲漏光帆 (Leaky Light-Sail)」加速正離子。當波長為800奈米、脈衝長度為267飛秒(femtosecond)、強度為5.34×1019 W/cm2的同調性圓極化電磁波照射在薄靶材上時,將能得到高能的單能質子束。在此研究中,我們選用了鋁、壓克力做為單層靶材,次為由鋁和壓克力所組成的雙層靶材,以及加上真空層形成的三層靶材。我們的研究結果指出,使用雷射脈衝分別照射在這三種靶材上時,當使用三層靶材時,有較好的質子能量加速梯度為3.8 MeV/μm,約為100 MeV的單能質子束;使用單層壓克力靶材時,能得到較好的質子能量約為160 MeV。高能且單能質子束在癌症治療上具更相當的應用價值。此論文中的結果也能當作為未來研究在太陽閃焰事件中,非同調性高頻、高強度電磁波加速正離子的參考。
摘要(英) Solar energetic particles (SEPs) are energetic ions and electrons produced during the solar flare events. The energy of particles observed during the SEP events ranges from keV to GeV. The electronic instruments of the satellites, spacecrafts, and astronauts could be damaged by the SEPs if the energy of SEPs is greater than 40 MeV. In this thesis, we study the Leaky-Light-Sail radiation-pressure acceleration (LLS RPA) of ions by means of one-dimensional Particle-in-Cell (PIC) simulation. Mono energetic protons are produced when we injected an intense laser pulse on an ultra thin target. The laser pulse is a coherent circularly polarized electromagnetic wave with a wavelength 800 nm, pulse duration 267 fs, and intensity 5.34×1019 W/cm2. Three types of thin target were used in this study. One of them is a single-layer thin target made by aluminum or Poly(methyl methacrylate). Another one is a two-layer thin target made by aluminum and Poly(methyl methacrylate). The other of them is a three-layer thin target made by aluminum, vacuum, and Poly(methyl methacrylate). Our simulation results indicate that irradiating the laser pulse on the three-layer target can produce the much better accelerating gradient of proton’s energy about 3.8 MeV/μm, and the energy of the energetic proton beam is larger than 100 MeV. The highest proton energy (about 160 MeV) can be achieved by irradiating the laser pulse on the single Poly(methyl methacrylate) target. The generation of mono energetic proton beam has valuable applications on the cancer treatments. The results obtained in this thesis can also serve as a guideline for future study on ion accelerations by incoherent high-frequency high-intensity electromagnetic waves in the solar flare events.
關鍵字(中) ★ 雙層靶材
★ 滲漏光帆
★ 強場
★ 加速
★ 質子
關鍵字(英) ★ proton
★ acceleration
★ two-layers
★ Leaky-Light-Sail
論文目次 中文摘要 i
英文摘要 ii
致謝 iV
目錄 Vi
圖目錄 Vii
第一章 緒論 1
第二章 強場電磁波加速粒子的理論回顧 6
2.1 電子加速機制 6
2.1.1 直接加速機制:相對論性的加熱、有質動力 11
2.1.2 間接加速機制:電漿波,尾波場 14
2.2 正離子加速機制 15
2.2.1 正面加速機制 17
2.2.2 背面加速機制:TNSA與RPA 19
2.2.3 RPA的特色與最佳化條件 22
2.3 超薄薄膜正離子加速機制 28
2.3.1 薄膜正離子加速 28
2.3.2 超薄薄膜正離子加速 32
第三章 模擬方法與結果 34
3.1 電漿電腦模擬與數值結果 34
3.1.1 模擬方法 34
3.1.2 靶材選取與設定 38
3.2 單能質子束的產生 40
3.2.1 單層靶材 40
3.2.2 雙層靶材 45
3.2.3 三層靶材-空間設置最佳化參數 51
3.2.4 綜合分析 60
第四章 總結與討論 65
附錄 參考文獻 67
參考文獻 [1] T. Nonaka, et al., Phys. Rev. D 74, 052003 (2006)
[2] R. P. LIN, Space Science Reviews 124: 233–248 (2006)
[3] M-B Kallenrode, J. Phys. G: Nucl. Part. Phys. 29 965 (2003)
[4] S. V. Bulanov, et al., Phys. L A 299 240 (2002)
[5] M. Borghesi, et al., Fusion Sci. Technol. 49 412 (2006)
[6] P. Mora, Phys. Rev. L 90 185002 (2003)
[7] S. P. Hatchett, et al., Phys. Plasmas 7 2076 (2000)
[8] Y. T. Li, et al., Phys. Rev. E 72 066404 (2005)
[9] C. T. Zhou, et al., Appl. Phys. L 90 031503 (2007)
[10] H. Schwoerer, et al., Nature 439 445 (2006)
[11] B. M. Hegelich, et al., Nature 439 441 (2006)
[12] J. Denavit, Phys. Rev. L 69 3052 (1992)
[13] L. O. Silva, et al., Phys. Rev. L 92 015002 (2004)
[14] M. Chen, et al., Phys. Plasmas 14 053102 (2007)
[15] A. Macchi, et al., Phys. Rev. L 94 165003 (2005)
[16] T. Esirkepov, et al., Phys. Rev. L 92 175003 (2004)
[17] L. Yin, et al., Phys. Plasmas 14 056706 (2007)
[18] X. Zhang, et al., Phys. Plasmas 14 123108 (2007)
[19] X. Q. Yan, et al., Phys. Rev. L 100 135003 (2008)
[20] A. P. L. Robinson, et al., New J. Phys. 10 013021 (2008)
[21] O. Klimo, et al., Phys. Rev. ST Accel. Beams 11 031301 (2008)
[22] M. Chen, et al., Phys. Rev. L 103 024801 (2009)
[23] X. Q. Yan, et al., Phys. Rev. L 103 135001 (2009)
[24] B. Qiao, et al., Phys. Rev. L 102 145002 (2009)
[25] Eliasson, et al., New J. Phys. 11 073006 (2009)
[26] V. K. Tripathi, et al., Plasma Phys. Control. Fusion 51 024014 (2009)
[27] E. Esarey, et al., Phys. Plasmas 2 1432 (1995)
[28] Schwoerer, Friedrich-Schiller-University Jena, Lecture Notes (2002)
[29] Ashcroft, et al.,” Solid state physics” (1976)
[30] Kruer, ” The physics of laser plasma interactions” (1988)
[31] Flieybach, Elektrodynamik. Spektrum akademischer Verlag, Heidelberg (1997)
[32] Bernhard, “Aufbau eines Experimentes zur Uberlagerung zweier gegenlau_gerintensiver Laserpulse”(2005)
[33] F. Amiranoff, Measurement Science and Technology 12 (2001)
[34] B. Quesnel, et al., Phys. Rev. E 58 (1998)
[35] E. L. Clark, et al., Phys. Rev. L 84 (2000)
[36] Y. Sentoku, et al., Physics of Plasmas 10 (2003)
[37] R. A. Snavely, et al., Phys. Rev. L 85 (2000)
[38] S. P. Hatchett, et al., Physics of Plasmas 7 (2000)
[39] S. C. Wilks, et al., Physics of Plasmas 8 (2001)
[40] M. Allen, et al., Phys. Rev. L 93 (2004)
[41] E. L. Clark, et al., Phys. Rev. L 85 (2000)
[42] Kaluza, MPI furQuantenoptik, Garching, Diss. (2004)
[43] J. Denavit, Phys. Rev. L 69 (1992)
[44] S. C. Wilks, et al., Phys. Rev. L 69 (1992)
[45] S. C. Wilks, Physics of Fluids B - Plasma Physics 5 (1993)
[46] L. O. Silva, et al., Phys. Rev. L 92 (2004)
[47] D. W. Forslund, et al., Phys. Rev. L 25 (1970)
[48] Bulanov, Plasma Physics Reports 28 (2002)
[49] P. McKenna, Review of Scientific Instruments 73 (2002)
[50] S.Y. Chen, “Theory of Laser-plasma interaction”, lecture note on laser plasma summer school (2008)
[51] T. Esirkepov et al., Phys. Rev. L 92, 175003 (2004)
[52] A. Macchi. et al., Phys. Rev. L 103, 085003 (2009)
[53] A P L Robinson, New Journal of Physics 10 (2008)
[54] A.Henig et al., Phys. Rev. L 103, 245003 (2009)
[55] T. Kluge et al., Phys. Rev. E 82, 016405 (2010)
[56] B. Qiao et al., Phys. Rev. L 105 155002 (2010)
[57] C. K. Birdsall et al., Plasma Physics via Computer Simulation (1991)
[58] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Taylor & Francis, (1989)
[59] R. Courant, et al., Uber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, vol. 100, no. 1, pages 32–74, (1928)
[60] S.J. Laio, “Effects of Laser Pulse Shape on Operation of the Phase-Stable Proton Accelerator”, Thesis (2010)
[61] J. M. Dawson, Rev. Mod. Phys. 55, 2, 403 (1983)
[62] A. J. Mackinnon et al., Phys. Rev. L 86, 1769 (2001)
[63] Petrov et al., Phys. Plasmas 17, 103111 (2010)
[64] K. Lee, Phys. Plasmas 18, 013101 (2011)
[65] Friedrich-Schiller-Universitat Jena, Generation of Quasi-Monoenergetic Proton Beams from High Intensity Laser Plasmas (2006)
[66] VORPAL, TechX
指導教授 呂凌霄、陳仕宏
(Ling-Hsiao Lyu、Shih-Hung Chen)
審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明