博碩士論文 986203024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:54.172.234.236
姓名 林韋彤(Wei-Tung Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 AERONET觀測資料在氣膠種類輻射參數之探討
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪
★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討
★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用★ 衛星資料在臺灣地區西南氣流降雨估算之應用
★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 應用衛星資料探討大台北地區都市熱島效應之時空分布★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結
★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響
★ 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
★ 對數常態分布在氣膠消光係數廓線擬合之應用★ 利用衛星及地面觀測遙測都市及郊區之氣膠光學厚度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在利用長期地面觀測資料(太陽光度計/AERONET)針對沙塵粒子、生質燃燒煙塵及人為污染物等不同氣膠分析其輻射參數隨波長變化之特性及其間關係之探討。結果顯示,粒徑較大的沙塵粒子其粒徑分布參數(Ångstöm exponent; AE)的觀測值(0.16)遠小於煙塵與人為污染,可用於沙塵粒子之辨識,而煙塵及人為污染則較為接近。在單次散射反照率方面,煙塵隨波長增長而減小(440nm、675nm、870nm及1020nm分別為0.87、0.86、0.83及0.83)表示其吸收能力隨波長增加而增強。由於都市地區混合較多種類氣膠特性人為污染吸收特性隨波長並無明顯差異,但在675nm有最大值,表示在675nm吸收能力最弱。而沙塵粒子輻射參數隨波長變化特性則與生質燃燒煙塵相反,吸收能力隨波長增長而減弱。因此,透過氣膠輻射參數(光學氣膠厚度、單次散射反照率等)隨波長之變化特性,可針對沙塵粒子、混合型氣膠、人為污染物及生質燃燒煙塵進行辨識。
由於大範圍單次散射反照率參數之提供並不普遍,例如衛星的反演資料,因此在實際區域性的應用上有其限制性,尤其在煙塵和人為污染的辨別。故本研究將藉由大氣中氣膠濃度值(微粒物質; Particulate Matter; PM值)與氣膠光學厚度關係的建立,探討在濃度相同下生質燃燒煙塵及人為污染物之氣膠光學厚度隨波長變化特性,作為辨識之參考。研究結果顯示,在相同濃度下生質燃燒及人為污染物氣膠氣膠光學厚度隨波長變化特性不同。因此,本研究進一步分析兩者在各波段間輻射特性的差異來建立氣膠種類辨識方法。
由長期資料測試結果顯示,在生質燃燒源區測站,經辨識方法判斷為生質燃燒煙塵氣膠在AE值(Mukdahn site:1.56±0.13,Pimai site:1.52±0.11)與AERONET統計生質燃燒煙塵氣膠AE值(Mukdahn site:1.61±0.07,Pimai site:1.59±0.05)的特性相當一致,且在SSA及AOD值隨波長變化特性也相同。在人為污染測站,經辨識方法判斷為人為污染物氣膠在AE值(Taipei site:1.32±0.19,Taihu site:1.24±0.23) 與AERONET統計人為污染物氣膠AE值(Taipei site:1.27±0.23,Taihu site: 1.19±0.24)非常接近,且在SSA及AOD值隨波長變化特性上也相當吻合。而在在生質燃燒源區測站,經辨識方法判斷為人為污染物氣膠在AE值(Mukdahn site:1.49±0.18,Pimai site:1.31±0.33)介於AERONET統計生質燃燒煙塵氣膠及人為污染物氣膠AE值(Mukdahn site:1.61±0.07,Taipei site:1.27±0.23)之間,應為混合型氣膠。在人為污染測站,經辨識方法判斷為生質燃燒煙塵氣膠在AE值(Taipei site:1.37±0.16,Taihu site:1.25±0.21)介於AERONET統計生質燃燒煙塵氣膠及人為污染物氣膠AE值(Mukdahn site:1.61±0.07,Taipei site:1.27±0.23)之間,但較靠近人為污染物特性,可視為混合型氣膠。因此,此辨識方法在對生質燃燒煙塵及人為污染物氣膠源區測站判斷結果與AERONET統計特性一致,未來在衛星觀測的應用方面可提供相當的助益。
摘要(英) The objective of this study focuses on the spectral characteristics from ground based observations (AERONET) for the type discrimination of the aerosols around the source regions of Asia and Africa. The suspended particles of mineral dust, smoke plumes and anthropogenic pollutants are the interesting types.
The long term measurements of the AERONET stations exhibit that the mineral dusts have the large particle size, the mean value of Ångström exponent (AE) of dust particles is about 0.16, while the smoke plumes and anthropogenic pollutants are equipped with strong absorption demonstrated by the values of Single Scattering Albedo (SSA). The SSA of smoke plumes from biomass burning decreases with the wavelength increases (440nm, 675nm, 870nm and 1020nm 0.87,0.86,0.83 and 0.83, respectively), indicating that the absorption capacity increases with the wavelength increases. For anthropogenic pollutions, the spectral SSAs are stable than the others except the weakest absorption at 675nm. Moreover, dust aerosols have the opposite character from biomass burning aerosols. That is the spectral absorption of dust aerosol decreases as the wavelength increases. The results therefore suggest that it is practical to discriminate the aerosol types by means of the spectral characteristics of AE and SSA.
However, the SSA property of aerosols is not frequently available for a wide area, for instance, SSA retrievals from remotely sensed data. In order to overcome such kind of limitation, this study try to distinguish smoke and anthropogenic aerosols based on the characteristics of spectral variation in optical properties under equivalent concentration (Particulate Matters; PM). By associating with the relationship between atmospheric aerosol concentration value (Particulate Matters; PM) and aerosol optical depth, the spectral variance in aerosol optical depth of biomass burning aerosols are distinct from anthropogenic pollutants. Eventually, the validation of proposed approach in discrimination smoke from anthropogenic pollutant is verified, and the results show the agreement with the observation from AERONET implying the highly practical. For more complex aerosols, further investigations are required.
關鍵字(中) ★ 沙塵粒子
★ 生質燃燒煙塵
★ 都市人為污染
★ AERONET
★ 光學輻射參數
★ 吸收光譜
關鍵字(英) ★ Dust particle
★ Smoke plume of biomass burning
★ anthropogenic pollutant
★ AERONET
★ Optical property
★ Characteristics of spectral radiation
論文目次 摘要 ...................................................Ⅰ
目錄 ...................................................Ⅶ
表目錄 .................................................Ⅹ
圖目錄 ................................................XII
第一章 前言 ............................................1
1.1 研究動機 .......................................1
1.2 研究目的 .......................................4
第二章 氣膠種類及其輻射參數簡介 ........................5
2.1 大氣氣膠 .......................................5
2.2 沙塵粒子 .......................................6
2.3 生質燃燒煙塵 ...................................9
2.4 人為污染物 ....................................11
2.5 氣膠輻射參數 ...................................12
2.5.1 氣膠光學厚度 ..............................12
2.5.2 粒徑分布參數 .... .........................13
2.5.3 單次散射反照率 ............................14
2.5.4 微粒物質 ..................................15
2.5.5 吸收氣膠光學厚度 ..........................16
2.5.6 吸收的粒徑參數 ............................17
第三章 研究方法 .......................................20
3.1 研究步驟 ......................................20
3.2 氣膠種類辨識 ..................................22
3.2.1 沙塵粒子 ..................................23
3.2.2 生質燃燒 ..................................27
3.2.3 人為污染物 ................................31
第四章 資料收集 .......................................35
4.1 資料收集 ......................................35
4.1.1 AERONET全球觀測網 .........................35
4.1.2 空氣品質監測網 ............................37
4.1.3 研究資料表 ................................38
第五章 結果與討論 .....................................39
5.1 氣膠輻射特性之探討 ............................39
5.1.1 氣膠光學厚度在波長之變化特性 ..............39
5.1.2 單次散色反照率在波長之變化特性 ............40
5.1.3 吸收氣膠光學厚度及吸收的粒徑參數............42
5.2 氣膠光學厚度與濃度之分析 ......................53
5.2.1 建立氣膠光學厚度與濃度(PM)之關係 ..........53
5.2.2 在相同濃度下各類氣膠輻射參數隨波長之變化...........59
5.3 案例分析 ......................................66
5.3.1 生質燃燒案例分析 ..........................66
5.3.1 人為污染物案例分析 ........................69
第六章 結論 ...........................................73
6.1 結論 ..........................................73
6.2 未來展望 ......................................77
參考文獻 ...............................................78
附錄: 口試委員問題回覆 .................................82
參考文獻 1.林和駿,林博雄及劉紹臣,2005: 台灣南北城市氣膠光學厚度的特徵,中華民國國際氣膠科技研討會,203 – 212。
2.林筱雯,2003: 東亞生質燃燒的區域影響。國立台灣大學大氣科學研究所博士論文。
3.吳承翰,2002 : 亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩士論文,中壢。
4.賈浩平,2008:微脈衝光達及太陽光度計之應用:2005-2007年中壢地區氣膠光學特性分析。國立中央大學物理研究所碩士論文,中壢。
5.蔡顓宜,2010。結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用,國立中央大學太空科學研究所碩士論文,中壢。
6.Andreae, M. O., C. D. Jones, and P. M. Cox, 1986, Strong present-day Aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
7.Brooks, N., & Legrand, M. (2000). Dust variability over northern Africa and rainfall in the Sahel. In S. McLaren, & D. Kniveton (Eds.),Link-ing climate change to land surface change (pp. 1 – 25). Dordrecht’Kluwer Academic Publishers.
8.Bergstrom R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, 2007
9.Christopher, D.E., and E.B. Kimberly, Survey of fires in Southeast Asia and India during 1987, in Global Biomass Burning, 2, 663-670, MIT Press, Cambridge, Mass., 1996.
10.Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B.Chen B. Chatenet, L. Gomes, X.-Y.Zhang, S. –C. Tsay, Q. Ji, D. Giles,and I. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
11.Fishman, J., and V.G. Brackett, The climatological distribution of tropospheric ozone derived from satellite measurements using version 7 Total Ozone Mapping Spectrometer and stratospheric Aerosol and Gas Experiment data sets, J. Geophys. Res. 102, 19275-19278, 1997.
12.Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiances and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Applied Optics, 33(3), 443– 453
13.Giles,D.M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer, An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D17203
14.Haywood J. M., O. Boucher, 2000. Estimates of the direct and indirect radiativeforcing due to tropospheric aserosol: a review. Reviews of Geophysics, 38,513-543.
15.Holben, N. B., and Kaufman, Y. J., 1998. AERONET - A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ, 66:1-16.
16.Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007 : Technical Summary, edited by F. Joes et al., Cambridge Univ. Press, New York.
17.Kaufman Y. J., 1989: The Atmospheric effect on remote sensing and its corrections. In Theory and Applications of Optical Remote Sensing, edited by G. Asrar (New York: John Wiley & Sons), 336-428.
18.Kurosaki, Y., and M. Mikami, Recent frequent dust events and their relation to surface wind in East Asia, Geophys. Res. Lett., 30, 14, 1736,2003.
19.Lelieveld, J., Berresheim, H., Bormamnn, S., Crutzen, P. J., Dentener, F. J.,Fisher, H., et al. (2002). Global air pollution crossroads over the Mediterranean. Sciences, 298, 794– 799.
20.Lin, C. Y., Shaw C. Liu, Charles C. K. Chou , Saint-Jer Huang, Chung-Ming Liu, Ching-Huei, Kuo , and Chea-Yuan Young, 2005, Long-Range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39, 6066-6076.
21.Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbish, and V. E. Cachorro, 2006, A long Saharan dust event over the western Mediterranean : Lidar, Sun Photometer observation, and regional Dust modeling, J. Geophys. Res., 111, D15214 doi:10.1029/2005JD 006579.
22.Russell, P., Livingston, J., Schmid, B., Eilers, J., Kolyer, R., Redemann, J., Ramirez, S., Yee, J.-H., Swartz,W., Shetter, R., Trepte, C., Risley Jr., A., Wenny, B., Zawodny, J., Chu, W., Pitts, M., Lumpe, J., Fromm, Randall, M. C., Hoppel, K., and Bevilacqua, R.: Aerosol optical depth measurements by airborne Sun photometer in SOLVE II: Comparisons to SAGE III, POAM III and airborne spectrometer measurements, Atmos. Chem. Phys., 5, 1311–1339, 2005
23.Russell, P. B., Livingston, J. M., Redemann, J., Schmid, B., Ramirez, S. A., Eilers, J., Khan, R., Chu, A., Remer, L., Quinn, P. K., Rood, M. J., and Wang, W.: Multi-Grid-Cell Validation of Satellite Aerosol Property Retrievals in INTEX/ITCT/ICARTT 2004, J. Geophys. Res., 112, D12S09, doi:10.1029/2006JD007606, 2007.
24.Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura, 2003, Optical properties of aerosols during APEX and ACE-Asia experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002 JD003263.
25.Sano, I., M. Makiko, I. Nobukazu and S. Mukaia, 2010, Suspended particulate matter sampling at an urban AERONET site in Japan, part2: relationship between column aerosol optical thickness and PM2.5 concentration, Journal of Applied Remote Sensing, Vol. 4, 043504.
26.Tegen, I., and Lacis, A., 1996. Modeling of particle size distribution and itsinfluence on the radiative properties of mineral dust aerosol. Journal of Geophysical Research, Volume 101, 19237-19244.
27.Thomas, G.E., and K. Stamnes, 1999: Radiative transfer in the atmosphere and ocean, Cambridge University Press, New York.
28.Wang, S.H., Lin, N. H; Chou, M. D.; Woo, J. H. (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J.Geophys.Res., 112, No. D10, D1022210 .1029/2006JD007564.
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明