博碩士論文 986203026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.234.208.87
姓名 康鎧麟(Kai-lin Kang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 日冕物質拋射速度與緯度和太陽活動週期的關係
(The relationship between the speed and latitude of coronal mass ejections and the solar activity cycle)
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 隨季節變化之灶神星冰極模擬
★ 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計★ 土星環鄰近地區之帶電塵埃粒子動力學
★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用★ 克普勒任務觀測G型星超級閃焰的資料分析
★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測
★ 土衛六泰坦大氣的甲烷在土星系統的分佈★ 冥王星與其它矮行星的大氣季節性演化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 日冕物質拋射會對地球的電離層產生影響,就是一般說的太空天氣。而有許多不同的機制產生日冕物質拋射,目前大家所接受的主要有兩個,一個是由太陽耀斑所產生的,也會伴隨著射電噴發,另一個是由日珥所產生的。這次我研究統計從1996 到2011 在SOHO / LASCO 上所截取的資料,去分析高低緯度日冕物質拋射的速度是否與太陽活動週期相關聯,還有一些超高速日冕物質拋射的探討,以及太陽黑子的週期計算。
我們從solar Influences data Analysis center網站得到從1749 年到2011 年黑子數量,然後分別以每個月為數量單位和以每年為數量單位,並運用快速複利葉轉換去計算黑子週期的變化,發現兩者誤差在小數點第二位以後。接著再用SOHO / LASCO 上的資料,分別去畫出高緯度與低緯度分別的時問速度分佈,發現與太陽週期活動相關聯,然而速度與緯度也隨著太陽極大期與極小期變化。最後在探討超快速日冕物質拋射是什麼原因產生,發現部分與X型耀斑有關。另外發現在高低緯度上的磁場也會分別引響日冕物質拋射速度的變化,主要是由勞倫茲與壓力的力量決定的。但高緯度的磁場會小於低緯度的,所以整個來說低緯度平均速度是高於高緯度的平均速度的。而有些高緯度高速度可能是由低緯度日冕物質噴發時,張角太寬,以致於部分的物質跑到高緯度去,而SOHO 剛好在那時候拍攝到在高緯處的低緯日冕物質。
摘要(英) The coronal mass ejections can have the influence to Earth’’s ionized layer with the magnetic layer, is the general said that space weather. There are many different mechanisms to produce coronal mass ejections. Currently accepted by the main there are two, one will be generated by solar flares accompanied by radio jets made, the other is generated by the prominence. The study statistics from 1996 to 2011 in the SOHO / LASCO on the intercepted data to analyze the speed of the high and low latitude coronal mass ejections associated with the solar activity cycle, some of ultra-high-speed coronal mass ejections and sunspots calculation of the cycle.
We get the number of sunspots (1749 to 2011) from Solar Influences Data Analysis Center website, and then every month for the number of units and for the number of units each year. We use of fast Fourier transform to calculate the change of the sunspot cycle, and found that errors after the second decimal place. And then using the information on the SOHO/ LASCO, respectively, to draw the high latitudes and low latitudes, respectively, the time rate of distribution, found that the activities associated with the solar cycle. Speed and latitude with the solar maximum period of minimal change. Finally, on the ultra - fast coronal mass ejections is the reason, found part of the X-type flares. We also found that the magnetic field will affect the change in the speed of coronal mass ejections in the high and low latitudes, is mainly determined by the Lorentz force and pressure. However, the high-latitude magnetic field is less than the low-latitude magnetic field, so the whole for low-latitude average speed is higher than the high-latitude average speed. Some high-latitude high-speed low-latitude coronal mass ejections, the angle is too wide, went to high latitudes to that part of the material, SOHO just when shooting at high latitudes at the low-latitude coronal mass.
關鍵字(中) ★ 日冕物質拋射 關鍵字(英) ★ coronal mass ejections
論文目次 中文摘要....................................................................................................................................i
英文摘要...................................................................................................................................ii
誌謝..........................................................................................................................................iii
目錄..........................................................................................................................................iv
圖目錄.......................................................................................................................................v
表目錄.....................................................................................................................................vii
一.概論......................................................................................................................................1
1.1太陽活動週期....................................................................................................................1
1.2 CME的介紹.......................................................................................................................2
1.3 CME的速度,角寬度與緯度的介紹.............................................................................5
1.4 CME與太陽表面活耀區之間的關係..............................................................................6
1.5 CME主要產生機制..........................................................................................................6
二.觀測資料.............................................................................................................................7
2.1資料來源............................................................................................................................7
2.2資料篩選............................................................................................................................8
三.資料分析.............................................................................................................................9
3.1太陽黑子平均週期...........................................................................................................9
3.2 CME速度數量隨時間分佈的關係................................................................................17
3.3 CME速度分佈數量與高低緯度的分佈關係...............................................................18
3.4 CME高緯度與低緯度速度數量分佈的關係..............................................................20
3.5 CME速度與緯度的分佈................................................................................................22
四.討論....................................................................................................................................31
4.1超快速CME.....................................................................................................................31
4.2高緯度與低緯度CME的速度......................................................................................32
五.結論....................................................................................................................................33
參考文獻.................................................................................................................................34
附錄一.....................................................................................................................................40
附錄二.....................................................................................................................................42
附錄三.....................................................................................................................................44
參考文獻 [1] Andrews M. D., Howard R. A., 2001, “A TWO-TYPE CLASSIFICAT10N OF LASCO
CORONAL MASS EJECTION”, Space Science Reviews, 95, 147.
[2] Andrews, M. D., 2003, “A Search for CMEs Associated with Big Flares”, Solar Phys., 218:261.
[3] Chen J., 1996, “Theory of prominence eruption and propagation: Interplanetary consequences”, JGR, 101, 27499.
[4] Chen, A. Q., Chen, P. F. and Fang, C., 2006a, " On the CME velocity distribution " ,
Astron. Astrophys., 456, 1153-1158.
[5] Chen P. F., 2011, “Coronal Mass Ejections Models and Their observational Basis, Living Rev”. Solar Phys., 8.
[6] Delannee, C., Delaboudiniere, J.-P., and Lamy, P., Astron., 2000, Atrophys, 355, 725.
[7] Dryer, M., 1982, “Coronal Transient Phenomena”, Space Sci. Rev., 33:233.
[8] Dumitrache C., N. A. Popescu, A. Oncica, 2011, “Tracking a Ulysses High-Iatitude ICME Event Back”, Solar Phys (2011) 272:137-157.
[9] FEYNMAN JOAN and ALEXANDER RUZMAIKIN, 2003, “A HIGH-SPEED
ERUPTING-PROMINENCE CME:A BRIDGE BETWEEN TYPES”, Solar Physics 219: 301-313.
[10] Forbes, T. G., 2000, " A review on the genesis of coronal mass ejections " , J . Geophys. Res., 105, 23, 153-23, 166.
[11] GAZIS P. R., A. BALOGH, S. DALLA, R. DECKER, B. HEBER, T. HORBURY
A. KILCHENMANN. J. KOTA. H. KUCHAREK, H. KUNOW, D. LARIO, M. S. POTGIETER, J. D. RICHARDSON, P. RILEY, L. RODRIGUEZ, G .SISCOE and R. VON STEIGER, 2006, “ICMES AT HIGH LATITUDES AND - IN THE OUTER HELIOSPHERE” , Space Science Reviews ( 2006 ) 123 : 417-451.
[12] Gao Peng-Xin, Ke-Jun Li, 2007, “Speed Distributions of CMEs in Cycle 23 at Low and High Latitudes”, Chin. J. Astron. Astrophys. Vol. 8 (2008), No. 2, 146-152.
[13] Gosling J. T., Hildner E., MacQueen R. M. et al., 1976, “The speeds of coronal mass ejection events”, Solar Phys . , 48, 389.
[14] Gosling , J . T . , HIldner , E . , MacQueen , R . M . , Munro , R . H . , Poland , A . I . and Ross , C . L, 1976, " The speeds of coronal mass ejection events " , Solar Phys., 48, 389-397.
[15] GOSLING J. T., R. J. FORSYTH, 2001, “CME-DRIVEN SOLAR WIND DISTURBANCES AT H IGH HELIOGRAPHIC LATITUDES”, Space Science Review, 97:87-98.
[16] Harrison, R.A.,1986, ”Solar Coronal Mass Ejections and Flare”, A&A, 162:283.
[17] Hundhausen, A. J., 1993, “Sizes and Locations of Coronal Mass Ejections-SMM Observation from 1980 and 1984~1989”, JGR, 98(A8):13177.
[18] Howard R.A., 2006, “A Historical Perspective on Coronal Mass Ejections”, Geophysical Monograph Series - Volume 165 - Title: Solar Eruptions and Energetic Particles - Editors: N. Gopalswamy, R. Mewaldt, J. Torsti - ISBN 0-87590-430-0 - AGU Code GM1654300., p.7.
[19] IVANOV E. V. and V. N. OBRIDKO, “CYCLIC VARIATIONS OF CME VELOCITY”
( Received 10 November 1999 ; accepted 19 September 2000 )
[20] Li He, 2001, “Modeling and Prediction of Sunspot Cycles”.
[21] MacQueen, R. M. and Fisher, R . R., 1983, Solar Phys. 89, 89.
[22] Mishra A. P., B. N. Mishra, Meera Gupta & V. K. Mishra, 2007, “Heliographic distribution Of bright solar flares and association of Forbush-decreases with flares and coronal mass ejections”, Indian Journal of physics 50, Vol. 37, August 2008, pp. 237-243.
[23] Moon Y. J., Choe G. S. , Wang H . M . et al., 2002, ApJ, 581 , 694.
[24] Nat Gopalswamy, 2006, “Coronal Mass Ejections of Solar Cycle 23”, J. Astrophys. Astr. 27 , 243-254.
[25] Nishant Mittal, Joginder Sharma, Vivek Tomar and Udit Narain, 2009, “On distribution of CMES speed in solar cycle 23”, Planetary and Space Science, Volume 57, Issue 1 , January 2009 , Pages 53-57.
[26] Pneuman, G. W., 1980, “Reconnection Driven Coronal Transients”, IAUSymp., 91 : 317.
[27] Qiu, J. and Yurchyshyn, V. B., 2005, " Magnetic ReC0nneCtion Flux and Coronal Mass Ejection Velocity " , Astrophys. J. Lett., 634.
[28] Reisenfeld D. B. and J. T. Gosling, R. J. Forsyth, P. Riley, O. C. St. Cyr , 2003, “Properties of High-latitude CME-driven disturbances during Ulysses second northern polar passage”, GEOPHYSICAL RESEARCH LETTERS , VOL . 30 , 8031.
[29] SCHWENN R . , J . C . RAYMOND , D . ALEXANDER , A . CIARAVELLA , N . GOPALSWAMY , R HOWARD . H . HUDSON , P . KAUFMANN , A . KLASSEN , D . MAIA , G . MUNOZ 一MARTINEZ M . PICK . M . REINER , N . SRIVASTAVA , D . TRIPATHI , A . VOURLIDAS , Y 一M . WANG and J . ZHANG , “Coronal observations of CMEs” , ( Received 9 January 2006 ; Accepted in final form 15 March 2006 ).
[30] Sheeley N . R . , Walters J . H . , Wang Y . M . , Howard R . A., 1999, Continuous tracking of coronal outfIows : Two kinds of coronal mass ejections , JGR , 104 , 24739.
[31] Song Wenbin, Xueshang Feng and Yanqi Hu, 2007, “Solar Cycle Variation of Real CME”, Latitudes, Astrophys .J ., (2007) 667 : L101-L104.
[32] Sturrock, P. A., Weber, M., Wheatland, M. S. and Wolfson, R., 2001, " Metastable Magnetic Configurations and Their Significance for Solar Eruptive Events ", Astrophys . J., 548 492-496.
[33] T. G. Forbes, J. Lin, " What can we - earn about reconnection from coronal mass
ejections ? " Journal of Atmospheric and Solar-Terrestrial Physics , Volume 62 , Issue 16 Pages 1499-1500, November 2000.
[34] Vrsnak B., 1990, Solar Phys., 129, 295.
[35] Wang, Y. M. , & Zhang, J., 2007 “A Comparative Study Between Eruptive X-Class Flares Associated with CMEs and Confined X-Class Flares”, Ap. J, 665 : 1428.
[36] Webb, D . F . : 1998 , In IAU Colloquium Webb , D . , Rust , D . , and Schmieder , B . (eds.). APS Conference Series . Vol. 150 , 463-474 .
[37] Wu, S. T., 1983, “Propagation of Solar Disturbance – Theories and Models”, Spance Sci. Rev. , 34 : 73.
[38] Yurchyshyn, V., S. Yashiro, V., Abramenko, H. et al., 2005, Astrophys. J. , 619, 599.
[39] Yurchyshyn V . , 5 . Yashiro , V . Abramenko , H . Wang , and N . Gopalswamy,
“STATISTICAL DISTRIBUTIONS OF SPEEDS OF CORONAL MASS EJECTIONS”, The Astrophysical Journal , 619 : 599 - 603, January 2005.
[40] Zhou G. P., Wang J. X., Zhang J., 2006, “Large-scale source regions of earth-directed coronal mass ejections”, A&A, 445, 1133.
[41] 方成,丁明德與陳鵬飛,太陽活動區物理,南京大學出版社,1stEd.Jun 2008.
指導教授 葉永烜(Wing-huen Ip) 審核日期 2012-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明