參考文獻 |
[1] Satuy, J. P., An analysis of hydrodispersive transfer in aquifer, Water Resour. Res., vol. 16, no. 1, 1980, pp. 145-158.
[2] Slichter, C.S., Field measurements of the rate of movement of underground waters, United States Geological Survey Water-Supply and Irrigation Paper 140, 1905.
[3] Ogata, A., Theory of dispersion in a granular medium, Geological Survey Professional Paper, vol. 441-I, 1970.
[4] Guvanasen, V., and V. M. Guvanasen, An approximate semi-analytical solution for tracer injection tests in a confined aquifer with a radially convergent flow field and finite volume of tracer and chase fluid, Water Resour Res., vol. 23, no. 8, 1997, pp. 1607-1619.
[5] Domenico, P. A., and F. W. Schwartz, Physical and Chemical Hodrology, New York: John Wiley & Sons, 1990.
[6] Carrera, J., and G. Walter, Theoretical developments regarding simulation and analysis of convergent flow tracer test. Sandia National Laboratories, 1985.
[7] Novakowski, K. S.,The analysis of tracer experiments conducted in divergent radial flow fields. Water Resour. Res., 1992, 28(12): 3215-3225.
[8] Welty, C. and Gelhar, L. W., Evaluation of longitudinal dispersivity from tracer test data, Ralph M. Parsons Laboratory for Water Resource and Hydrodynamics., Rep. 320. Massachusetts Institute of Technology, Cambridge, MA, 1989, pp. 107.
[9] Moench, A. F., Convergent radial dispersion: A Laplance transform solution for aquifer tracer testing, Water Resour. Res., vol. 25, no.3, 1989, pp. 439-447.
[10] 陳瑞昇,徑向收斂流場追蹤劑試驗延散效應解析,博士論文,國立台灣大學農業工程研究所,台北,1997。
[11] Leij, F. J., and J. H. Dane, The effect of transverse dispersion on solute transport in soils. J. Hydrol., vol. 122, 1991, pp. 407-422.
[12] Kapoor, V., and L. W. Gelhar, Transport in three-dimensionally heterpgeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res., vol. 30, no. 6, 1994, pp. 1775-1778.
[13] Kapoor, V., and P. K. Kitanidis, Concentration fluctuations and dilution in aquifer, Water Resour. Res., vol. 34, no. 5, 1998, pp. 1181-1193.
[14] Fiori, A., and G. Dagan, Concentration fluctuations in aquifer transport: A rigorous first-order solution and applications, J. Contam. Hydrol., vol. 45, no. 1, 2000, pp. 139-163.
[15] Chen, J. S., C. S. Chen, H. S. Gau, and C. W. Liu, A two-well method to evaluate transverse dispersivity for tracer tests in radially convergent flow field, J. Hydrol., vol. 223, 1999, pp. 175-197.
[16] Chen, J. S., C. W. Liu, C. S. Chen, and C. M. Liao, Effect of well bore mixing volume on non-axisymmetrical transport in a convergent tracer test, J. Hydrol., vol. 277, 2003, pp. 61-73.
[17] Balkhair, K. S., Aquifer parameters determination for large diameter wells using neural network approach, J. Hydrol., vol. 265, 2002, pp. 118-128.
[18] Papadopulos, I. S., Drawdown distribution around a large diameter well, National Symposium on Groundwater Hydrology, San Francisco, CA November, 1967, pp. 157-168.
[19] Samani, N., M. Gohari-Moghadam, and A. A. Safavi, A simple neural network model for the determination of aquifer parameters, J. Hydrol., vol. 340, 2007, pp.1-11.
[20] Lin, G. F., and G. R. Chen, An improved neural network approach to the determination of aquifer parameters, J. Hydrol., vol. 316, 2006, pp. 281-289.
[21] Rogers, L. L., and F. U. Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., vol. 30, no. 2, 1994, pp. 457-481.
[22] Voss, C. I., A finite-element simulation model for saturated-un saturated, fluid-density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport, U. S. Geol. Surv. Water Resour. Invest., 1984, 409, pp. 84-4369,
[23] Akin, S., Tracer model indentification using artificial neural networks, Water Resour. Res., vol.41, 2005, W10421, doi: 10.1029/2004WR003838.
[24] Yoon, H. S., Y. J. Hyun, and K. K. Lee, Forecasting solute breakthrough curve through the unsaturated zone using artificial neural networks, J. Hydrol., vol. 335(1-2), 2007, pp. 68-77.
[25] Shieh, H. Y., J. S. Chen, C. N. Lin, W. K. Wang, and C. W. Liu, Development of an artificial neural network model for determination of longitudinal and transverse dispersivities in a convergent flow tracer test, J. Hydrol., vol. 391, 2010, pp. 367-376.
[26] Chen, J. S., C. W. Liu, H. T. Hsu, and C. M. Liao, A Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion, Water Resour. Res., vol. 39, no.8, 2003, doi:10.1029/2003WR002299.
[27] De Hoog, F. R., J. H. Knight, and A. N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput., 3(3), 1982, pp. 357-366.
[28] Crump, K. S., Numerical inversion of Laplace transforms using a Fourier Series approximation. J. Assoc. Comput. Mach., 23(1), 1976, pp. 89-96.
[29] Amos, D. E., A portable package for Bessel functions of a complex argument and nonnegative order, Algorithm 644, ACM Trans. Math. Software, 12(4), pp. 265-273.
[30] 葉怡成,類神經網路模式應用與實作第七版,台北:儒林圖書有限公司,2000。
[31] 張斐章,張麗秋,類神經網路,台北:臺灣東華書局股份有限公司,2005。
[32] Li, S.G. and Q. Liu, Software News - "Interactive Ground Water (IGW)", Environmental Modeling and Software. 21(3), 2006.
[33] Schwartz, F. W., and H. Zhang, Fundamentals of Ground Water, John Wiley & Sons, Inc, 2003.
[34] Bear, J., Hydraulics of Groundwater, New York: McGraw-Hill Inc, 1979.
|