博碩士論文 986206004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.210.201.170
姓名 賴民順(Min-Shun Lai)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
(Dependency of Low Grazing Angle Microwave Radar Backscatter to Surface Waves)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 澎湖海域潮流之數值模擬及其發電潛能評估
★ 台灣沿海表面風之週期特性★ 微波雷達與CCD影像分析於潮間帶地形測量之應用
★ The directional spreading of surface wave in the shallow water zone★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
★ 平緩海灘表層含水量變化特性研究★ 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究應用航海用S頻段(S-Band)和X頻段(X-Band)低掠角(Low Grazing Angle,LGA)微波雷達為主要觀測工具,進行現場實驗從觀測結果探討雷達回波強度受到海面波浪影響的程度。
本研究首先進行雷達接收強度之率定工作。第一步以佈放於觀測海域上的自製金屬浮球做為雷達觀測之標的物,再使用Gommenginger et al.(2000)的外部率定法(External Calibration Approach),回歸出雷達系統傳遞方程式(Radar System Transfer function)中所需要的待定參數,分別完成兩架不同頻段的雷達之率定。
本研究進一步分別進行了兩次現場實驗:颱風時期實驗和季風時期實驗,再將觀測結果以兩個層面進行討論,分別是長時間之雷達回波統計分佈分析及短時間的波浪相位變化與雷達回波之關係兩者進行討論。討論項目第一為,平均雷達回波(Sea clutter)強度於統計上的特徵及其與風速、海面平均傾度(Mean Square Slope,MMS)和粗糙參數(Roughness Parameter)間之相關性;第二,本研究依據雷達連續觀測所得之定點上回波時序列與佈放於海中之聲學式都普勒流速剖面儀(Acoustic Doppler Current Profiler,ADCP)的音鼓測得之水位和傾度,將水位以零上切法解析出個別波引致之水位,探討雷達回波特性與其對應之水位和傾度之相關性。
本研究結果發現,平均雷達回波在觀測距離較遠時,掠角低觀測海面區域所反射之區域(footprint)大於海面波長時,回波訊號(spike)可以雙峰高斯分佈描述,可視為兩個不同平均與標準差的常態分佈線性之和。其與低掠角微波雷達回波的兩種機制一致,亦即本研究獲得觀測上的證據,支持雙尺度模式(two scale model)中的布拉格背向散射(Bragg Backscattering)及重力波調變作用之效應。此外,海面背向散射影像因海面波浪起伏所呈現的亮暗帶分佈,在一水位波長內雷達的回波強度僅有一最大值與最小值,最大值非發生於波峰,最小值也非發生於波谷,其間存在一相位差,此相位差隨波浪尖銳度增加而變大,顯示低掠角雷達受波峰遮蔽影響程度甚大,其效應不可忽視。
摘要(英) In present study, the commercial marine S-Band and X-Band low grazing angle radar systems were utilized as the main tools in field experiments, and investigation of the influence of the surface waves was carried out.
The first step in this study is the calibration of radars. Metallic balls with various sizes were launched in the observational area and used as the reflectors of radar detection. The External Calibration Approach (Gommenginger et al. 2000) was then applied to obtain the parameters of Radar System Transfer Function. In this study, the calibration of two different bands of the radar systems were achieved, respectively.
Secondly, field experiments including, typhoon Fanapi and a winter monsoon events, were carried out. Synchronized observations of gravity waves, air-sea fluxes, and dual-band Radar systems were implemented. The strategy of data analysis is twofold, i.e. the statistical analysis on the probability of long-term records of Radar Backscatter intensity, and the cross-correlation analysis on the dependency of Radar backscatter intensity to the wave elevation and slope. In the first part, the discussions were focused on the temporal averaged radar backscatter intensity to the wind speeds, significant wave heights, Mean Square Slope of gravity waves and the Roughness Parameters. The second part we emphasized on,the dependency of Radar backscatter intensity to the phase resolved water elevation and slope, which were obtained using zero-up crossing to separate individual wave form from the ADCP measured time series.
The result of present study shows that the probability of return signals (spike) are better described using Bimodal Gaussian distribution, especially for those whose footprints were greater than the lengths of surface wave. The Probability distribution can be regarded as the summation of two normal distributions with two individual means and standard deviations. The lower ones represent the wind induced wavelet effects, whereas, the higher peak represent the gravity waves. Meanwhile, this is the observation evidence of the two scale theory of low grazing angle microwave radar. Furthermore, the distribution of the high gray value (GN) and low gray value band on the radar image which affected by gravity waves features single maximum and minimum. The maximum value does not coincide with the wave crest; likewise minimum value does not coincide with wave trough. In this case, phase lag could be identified. Moreover, with increasing wave steepness, phase lag increases. It could be concluded that the low grazing angle radar is affected by the sheltering effect which should not be neglected in any circumstances.
關鍵字(中) ★ 低掠角微波雷達
★ 雷達率定
★ 平均雷達回波
★ 相位解析
★ 零上切法
關鍵字(英) ★ zero up-crossing
★ phase resolved
★ sea clutter
★ low grazing angle radar
★ calibration of radar
論文目次 中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒 論 1
1-1 前言 1
1-2 研究目的 4
1-3 本文架構 4
第二章 雷 達 之 率 定 6
2-1 雷達率定實驗 6
2-2雷達率定分析 9
2-3雷達率定結果與討論 13
第三章 資 料 來 源 與 分 析 21
3-1 颱風時期實驗 21
3-2 季風時期實驗 24
第四章 平 均 雷 達 回 波 之 統 計 特 性 28
4-1 平均雷達回波之統計特性分析 28
4-2 平均雷達回波之統計特性結果與討論 40
第五章 相 位 解 析 之 雷 達 回 波 強 度 與 波 浪 水 位 相 關 性 51
5-1 相位解析之雷達回波強度與波浪水位相關性之分析方法 51
5-2 相位解析之雷達回波強度與波浪水位相關性之結果與討論 56
第六章 結 論 62
參 考 文 獻 63
附錄A 65
附錄B 70
參考文獻 [1] 尹彰,周宗仁和翁文凱,「有關海面雜波問題的探討」,第29屆海洋工程研討會,583-588頁,國立成功大學、台灣台南市,2007年11月。
[2] 苑瀞丰,「近岸海洋波浪對表面粗糙度之影響」,國立中央大學,碩士論文初稿,民國100年。
[3] 邱銘達,「資料浮標量測波高波向準確度提升研究」,國立成功大學,碩士論文,民國90年。
[4] 俞聿修,隨機波浪及其工程應用,初版,國立成功大學近海水文中心,台南市,民國九十一年四月。
[5] Barrick,D.E., “Wind dependence of quasi-specular microwave sea scatter”, Antennas and Propagation, IEEE Transactions on, Vol. 22, pp. 135-136, January 1974.
[6] Bass,F., I. Fuks,A. Kalmykov, I. Ostrovsky and A. Rosenberg, “Very high frequency radiowave scattering by a disturbed sea surface Part II: cattering from an actual sea surface”, Antennas and Propagation, IEEE Transactions on, Vol. 16, pp. 560-568, September 1968.
[7] Gommenginger,C.P., N.P. Ward, G.J. Fisher, I.S. Robinson and S.R. Boxall, “Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images”, Journal of Atmospheric and Oceanic Technology, Vol. 17, pp. 665-678, May 2000.
[8] Trizna,D.B., “Statistics of low grazing angle radar sea scatter for moderate and fully developed ocean waves”, Antennas and Propagation ,IEEE Transactions on, Vol. 39, pp. 1681-1690, December 1991.
[9] Ulaby, F. T., R.K. Moore and A.K. Fung, Microwave Remote Sensing: Radar Remote Sensing and Surface Scattering and Emission Theory v. 2., Addison-Wesley., U.S., 1982.
[10] Vandemark, D., B. Chapron, J. Sun, G. H. Crescenti and H. C. Graber, “Ocean wave slope observations using radar backscatter and laser altimeters”, J. Phys. Oceanogr, Vol.34, pp.2825–2842, December 2004.
[11] Ward , K. D., Sea Clutter: Scattering the K Distribution and Radar Performance., Institution of Engineering and Technology., UK, 2006.
[12] Ward,K.D., C.J. Baker and S. Watts, “Maritime surveillance radar Part 1 : Radar scattering from the ocean surface”, IEE Proceedings, Part F, Vol. 137, pp. 51-62, 2006.
[13] Wright, J.W., “A new model for sea clutter”, Antennas and Propagation, IEEE Transactions on, Vol. 16, pp. 217-223, March 1968.
[14] Wright, J.W., “Backscattering from capillary waves with application to sea clutter”, Antennas and Propagation, IEEE Transactions on, Vol. 14, pp. 749-754, November 1966.
指導教授 錢樺(Hwa Chien) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明