博碩士論文 986402002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.149.234.141
姓名 謝銘哲(Ming-Che Hsieh)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 三維結構中有限地震源模型之高效率波形反演
(Efficient waveform inversions for finite-source models of moderate and large earthquakes in three-dimensional structures)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一套快速而準確的地震有限震源破裂過程解算系統能有助於我們對地震發生前後之相關風險與災害的評估,實屬快速報告、防震減災之重要一環。此外,隨著對三維地下構造與地表地形的了解,將這些物理因素納入震波傳遞模擬、計算格林函數等工作,能更準確地評估地面運動。本論文將近年發表之台灣三維速度模型以及地表高程數據納入考量,發展出一套三階段之快速震源破裂解算系統,嘗試求解不同規模地震之有限震源破裂模型。該三階段包含:(1) 接獲地震速報後,快速搜尋點震源深度、震矩規模與震源機制;(2) 由震源機制判斷可能之破裂面與其平均破裂形式;(3) 由第二步驟所判斷之破裂面作為斷層面,反演中大規模地震之震源錯動量時空分佈模型。經一系列發生於台灣南、東部的中規模地震驗證,並與餘震、背景地震活動及前人研究結果等資訊比對,本論文所提供之方法能有效並快速地求解地震破裂過程。本論文亦應用前述方法,求解台灣中部南投地區一系列中規模地震(MW≈6)並提供構造解釋。該群地震有著相似的震源機制,卻有相當不同的深度。藉由本論文前述發展之方法,結果顯示深度小於20公里的地震,其破裂面為低角度朝東傾斜之斷層面,而深度大於20公里的地震,破裂面則為高角度朝西傾斜的斷層面,同背景地震活動與前人相關研究比對,本論文之結果為台灣中部共軛斷層面的存在及其形態提供了直接的地震學證據。為求更精確之地震源錯動量分佈,本論文亦採三維格林函數進行反演,並與一維格林函數反演結果比較,同時,反演過程亦考慮三維與一維之剛性係數分佈。通過研究發生於2013年10月31日之瑞穗地震,結果顯示三維模型能有效降低波形擬合殘差,並得到相對集中的錯動量空間分佈。通過上述研究分析與實踐,本論文所提供之快速反演地震破裂過程方法,可於個人甚至筆記本電腦、近自動化地求解地震源破裂過程,為地震減災、危險評估以及震源研究提供良好的參考資訊。
摘要(英) For hazard mitigation and risk assessment, an efficient and well-designed algorithm to determine earthquake rupture properties in a short time is on demand. It is also important to account for effects of surface and subsurface structures to wave propagation and predict ground motion more accurately. In this thesis, we have developed an efficient three-step process which is used in solving for a finite-source model: A point-source focal mechanism is determined in the first step. Then, the two nodal planes in the point-source solution are used as trial candidates to solve for an average finite-rupture model and identify the actual fault plane. In the final step, a full slip distribution inversion is carried out based on the identified fault plane. We have adopted the source determination scheme to earthquakes near Nantou in central Taiwan for tectonic interpretations. We solved for the rupture properties of a series of moderate events (MW≈6), which show similar focal mechanisms but with different focal depths. Our determination on the rupture planes of these earthquakes suggest that the most of the shallow-focus ruptures occur on the low-angle plane, but on the high-angle plane for most of the deeper events, consistent with the background seismicity and support the existence of tectonically co-located active conjugate faulting system in central Taiwan. We also demonstrated the slip distribution inversion of a moderate earthquake in eastern Taiwan by our three-step procedure. Both broadband and strong motion stations are included in the inversion. Our results show that three-dimensional velocity model could provide better waveform fittings than one-dimensional model, and slip distribution is much more concentrated. Applications to moderate events (MW≈6) in southeastern and eastern Taiwan show that our source inversion technique is effective for semi-automatic, near real-time determinations of finite-source parameters for seismic hazard mitigation purposes.
關鍵字(中) ★ 地震學
★ 震波模擬
★ 波形反演
★ 有限震源模型
關鍵字(英) ★ Seismology
★ Waveform simulation
★ Waveform Inversion
★ Finite-source Model
論文目次 Chapter 1: Introduction ................................................................................................ 1
Chapter 2: Efficient Calculation of Accurate Synthetic Seismograms ..................................................... 6
2.1 Traction-image finite-difference method ............................................................................ 6
2.1.1 3-D velocity model .............................................................................................. 12
2.1.2 Implementation of topography to finite-difference mesh .......................................................... 13
2.1.3 Source time function ............................................................................................ 14
2.1.4 Benchmark of simulation ......................................................................................... 16
2.2 Comparison of waveforms among 1-D and 3-D models with and without topography ...................................... 17
2.3 Strain Green tensor database for rapid synthetic calculation ...................................................... 18
2.3 Point- and finite-source forward simulations by SGT ............................................................... 20
Chapter 3: Efficient Waveform Inversion for Average Earthquake Rupture Models in Three-dimensional Structures.......... 38
3.1 Seismic data and moderate earthquakes ............................................................................. 38
3.2 Grid search inversion for point-source parameters ................................................................. 39
3.3 Grid search inversion for finite source parameters ................................................................ 44
3.4 Application to moderate earthquakes in Taiwan ..................................................................... 47
3.4.1 The 4 March 2010 (ML=6.4) Jiahsian earthquake.................................................................... 47
3.4.2 The 26 February 2012 (ML=6.4) Wutai earthquake .................................................................. 49
3.4.3 The 1 and 15 April 2006 (ML=6.2 and 6.0) Taitung earthquakes .................................................... 50
3.4.4 The 31 October 2013 (ML=6.4) Ruisui earthquake................................................................... 51
3.5 Discussion ........................................................................................................ 51
Chapter 4: Source Rupture Properties of Moderate Earthquakes in Central Taiwan from Regional Waveform Inversions ...... 71
4.1 Introduction ...................................................................................................... 71
4.2 Tectonic background and earthquakes ............................................................................... 74
4.3 Inversion for average rupture models .............................................................................. 76
4.4 Results and discussion ............................................................................................ 77
4.4.1 Waveform inversion of the 201306020543 Nantou event ............................................................. 77
4.4.2 Finite rupture scenarios to structural interpretations .......................................................... 80
4.5 Summary ........................................................................................................... 84
Chapter 5: Near Real-time Waveform Inversion for Finite-source Slip Distributions in 3-D Structures ................... 96
5.1 Introduction ...................................................................................................... 97
5.2 Slip distribution inversion based on 3-D Green’s function and wavelet-decomposition of seismic waveforms .......... 98
5.3 Slip Distribution Inversion in 1-D Structure ..................................................................... 101
5.3.1 14 Oct. 2014 Intipuca Earthquake (El Salvador, Mw 7.3, depth 42 km) ............................................ 101
5.3.2 22 Nov. 2014 Nagano Earthquake (Japan, Mw 6.3, depth 5 km) ..................................................... 102
5.4 Synthetic tests for slip distribution inversion in 3-D model ..................................................... 102
5.5 Slip distribution of the 31 Oct. 2013 Ruisui earthquake .......................................................... 105
5.6 Summary .......................................................................................................... 107
Chapter 6: Conclusions ............................................................................................... 131
References ........................................................................................................... 134
參考文獻 Aagaard, B. T., Hall, J. F., & Heaton, T. H., 2001. Characterization of near source ground motions with earthquake simulations, Earthquake Spectra, 17, 177–207.
Abrahamson, N. A. & Silva , W. J., 2008. Summary of the Abrahamson & Silva NGA ground-motion relations, Earthquake Spectra, 24, 1, 67-97.
Aki, K. & Richards, P. G., 2002. Quantitative Seismology, 2nd edn, 700 pp., University Science Books, Sausalito, California, USA.
Amante, C. & Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp..
Angelier, J., Barrier, E. & Chu, H.T., 1986. Plate collision and paleostress trajectories in a fold-thrust belt: the foothills of Taiwan, Tectonophysics, 125, 161-178.
Backus, G. E., 1977. Seismic sources with observable glut moments of spatial degree two, Geophys. J. R. Astr. Soc., 51, 27–45.
Backus, G. & Mulcahy, M., 1976. Moment tensors and other phenomenological descriptions of seismic sources - I. Continuous displacements, Geophys. J. R. Astr. Soc., 46, 341–361.
Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O’Hallaron, D. R., Shewchuk, J. R. & Xu, J., 1998. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Methods Appl. Mech. Eng., 152, 85–102.
Baumann, C. & Dalguer, L. A., 2014. Evaluating the compatibility of dynamic rupture‐based synthetic ground motion with empirical ground‐motion prediction equation, Bull. Seism. Soc. Am., 104, 2, doi: 10.1785/0120130077.
Berenger, J. A., 1994. Perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Geophys., 114, 185–200.
Boore, D. M. & Atkinson, G. M., 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-Damped PSA at spectral periods between 0.01s and 10.0s, Earthquake Spectra, 24, 1, 99-138.
Bukchin, B. G., 1995. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra, Tectonophysics, 248, 185–191.
Campbell, K. W. & Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s, Earthquake Spectra, 24, 1, 139-171.
Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan, Am. J. of Sci., 272, 389-422.
Chan, C. H. & Wu, Y. M., 2012. A seismicity burst following the 2010 M 6.4 Jiashian earthquake – implications for short-term seismic hazards in southern Taiwan, J. Asian Earth Sci., 59, 231–239.
Chen, C. H., Huang, H. H., Chao, W. A., Wu, Y. M. & Chang, C. H., 2013. Re-examining source parameters of the 2012 Wutai, Taiwan earthquake, Terr. Atmos. Ocean. Sci., 24, 827–835.
Chen, H. Y., Hsu, Y. J., Lee, J. C., Yu, S. B., Kuo, L. C., Jiang, Y. L., Liu, C. C. & Tsai C. S., 2009. Coseismic displacements and slip distribution from GPS and leveling observations for the 2006 Peinan earthquake (Mw 6.1), Earth Planets Space, 61, 299–318.
Chen, K. C., Huang, B. S., Wang, J. H. & Yen, H. Y., 2002. Conjugate thrust faulting associated with the 1999 Chi-Chi, Taiwan, earthquake sequence, Geophys. Res. Lett., 29, 8, 118-1 - 118-4.
Chen, P., Jordan, T. H. & Zhao, L., 2005. Finite-moment tensor of the 3 September 2002 Yorba Linda earthquake, Bull. Seism. Soc. Am., 95, 1170–1180.
Chen, P. F., Huang, B. S. & Liang, W. T., 2004. Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times, Earth & Planet. Sci. Lett., 229, 61-71.
Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H. & Kuo, L. C., 2014. Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge? Geophys. Res. Lett., 41, 3464-3470.
Cotton, F. & Campillo, M., 1995. Frequency domain inversion of strong motions: application to the 1992 Landers earthquake, J. Geophys. Res., 100, B3, 3961–3975.
Dahlen, F. A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton University, Princeton, New Jersey.
Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T., Deramond, J., Lee, J. F., Yu, M.S. & Liew, P.M., 1997. Quaternary transfer faulting in the Taiwan Foothills: Evidence from a multisource approach, Tectonophysics, 274, 61-82.
Deffontaines, B., Lee, J. C., Angelier, J., Carvalho, J. & Rudant, J. P., 1994. New Geomorphic Data on the Active Taiwan Orogen - a Multisource Approach, J. Geophys. Res., 99, B10, 20243-20266.
Dreger, D. S. & Helmberger, D. V., 1993. Determination of source parameters at regional distances with three-component sparse network data, J. Geophys. Res., 98, 8107–8125.
Dziewonski, A. M., Chou, T. A. & Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852.
Fornberg, B., 1988. The pseudospectral method–accurate representation of interfaces in elastic wave calculations, Geophysics, 53, 625–637.
Fornberg, B., 1990. High-order finite-differences and pseudospectral method on staggered grids, SIAM J. Numer. Anal., 27, 904–918.
Ge, Z. X. & Chen, X. F., 2007. Wave propagation in irregularly layered elastic models: a boundary element approach with a global reflection/transmission matrix propagator, Bull. seism. Soc. Am., 97, 1025–1031.
Gottlieb, D. & Turkel, E., 1976. Dissipative 2-4 methods for time-dependent problems, Mathematics of Computation, 30, 703–723.
Gottschammer, E. & Olsen, K. B., 2001. Accuracy of the explicit planar free surface boundary condition implemented in a fourth-order staggered-grid velocity-stress finite-difference scheme, Bull. Seism. Soc. Am., 91, 617–623.
Graves, R. W., 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., 86, 1091–1106.
Graves, R. W. & Wald , D. J., 2001. Resolution analysis of finite fault source inversion using 1D and 3D Green’s functions. I. Strong motion, J. Geophys. Res. 106, 8745–8766.
Guatteri, M. & Spudich P., 2000. What can strong-motion data tell us about slip-weakening fault-friction law? Bull. Seism. Soc. Am. 90, 98–116.
Hirata, N., Sakai, S., Liaw, Z. S., Tsai, Y. B. & Yu, S. B., 2000. Aftershock observations of the 1999 Chi-Chi, Taiwan earthquake, Bulletin of the Earthquake Research Institute University of Tokyo, 75, 33-46.
Hartzell, S. H. & Heaton, T. H., 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake, Bull. Seism. Soc Am., 73, 1553–1583.
Hixon, R., 1997. On increasing the accuracy of MacCormack schemes for aero acoustic applications, AIAA Paper, doi: 10.2514/6.1997-1586.
Ho, C. S., 1986. A synthesis of the geological evolution of Taiwan, Tectonophysics, 125, 1-16.
Hsieh, M. C., Zhao, L. & Ma, K. F., 2014. Efficient waveform inversion for average earthquake rupture in three-dimensional structures, Geophys. J. Int., 198, 1279-1292.
Hsu, S. K. & Sibuet, J.-C., 1995. Is Taiwan the result of arc-continent or arc-arc collision? , Earth & Planet. Sci. Lett., 136, 315-324.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C. & Chen, H. Y., 2009. Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.
Ji, C., Wald, D.J. & Helmberger, D.V., 2002a. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis, Bull. Seism. Soc Am., 92, 1192-1207.
Ji, C., Wald, D.J. & Helmberger, D.V., 2002b. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history, Bull. Seism. Soc Am., 92, 1208-1226.
Kanamori, H. & Rivera, L., 2008. Source inversion of W phase: speeding up seismic tsunami warning, Geophys. J. Int., 175, 222–238.
Kim, K. H., Chiu, J. M., Pujol , J., Chen, K. C., Huang, B. S., Yeh, Y. H. & Shen, P., 2005. Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204–220.
Klin, P., Priolo, E. & Seriani, G., 2010. Numerical simulation of seismicwave propagation in realistic 3-D geo-models with a Fourier pseudo spectral method, Geophys. J. Int., 183, 905–922.
Koketsu, K., Miyake, H., Fujiwara, H., Hashimoto, T., 2008. Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map. Proceedings of the 14th World Conference on Earthquake Engineering, abstract S10–038.
Komatitsch, D. & Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806–822.
Komatitsch, D., Liu, Q., Tromp, J., Süss, P., Stidham, C., and Shaw, J. H., 2004. Simulation of ground motion in the Los Angeles Basin based upon the spectral-element method, Bull. Seism. Soc. Am., 94, 187-206.
Kuo-Chen, H., Wu, F. T. & Roecker, S. W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets, J. Geophys. Res., 117, B06306, doi: 10.1029/2011JB009108.
Kuochen, H., Wu, Y.-M., Chen, Y.-G. & Chen, R.-Y., 2007. 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures, J. Asian Earth Sci., 31, 332–339.
Lallemand, S., Font, Y., Bijwaard, H. & Kao, H., 2001. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335, 229-253.
Lee, C. T. & Tsai, B. R., 2008. Mapping Vs30 in Taiwan, Terr. Atmos. Ocean. Sci., 19, 6, 671-682.
Lee, E. J., Chen, P., Jordan, T. H. & Wang, L., 2011. Rapid full-wave centroid moment tensor (CMT) inversion in a three-dimensional Earth structure model for earthquakes in Southern California, Geophys. J. Int., 186, 311–330.
Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y. & Rau, R. J., 2002. Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures, J. of Struct. Geol., 24, 173-192.
Lee, S. J., Komatitsch, D., Huang, B. S., & Tromp, J., 2009. Effects of topography on seismic-wave propagation: An example from northern Taiwan, Bull. Seism. Soc. Am., 99, 314-325, 2009.
Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y. & Lin, T. C., 2014. Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation, J. of Asian Earth Sci., 96, 374-385.
Lee, S. J., Ma, K. F. & Chen, H. W., 2006. Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 111, B11.
Lee, S. J., Mozziconacci, L., Liang, W. T., Hsu, Y. J., Huang, W. G. & Huang, B. S., 2013. Source complexity of the 4 March 2010 Jiashian, Taiwan, earthquake determined by joint inversion of teleseismic and near field data, J. Asian Earth Sci., 64, 14–26.
Lin, C. H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 329, 184-201.
Lin, C. H. & Ando, M., 2004. Seismological evidence of simultaneous mountain-building and crust-thickening from the 1999 Taiwan Chi-Chi earthquake (Mw=7.6), Earth Planets Space, 56, 163-167.
Lin, K. C., Hu, J. C., Ching, K. E., Angelier, J., Rau, R. J., Yu, S. B., Tsai, C. H., Shin, T. C. & Huang, M. H., 2010. GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan, J. Geophys. Res., 115, B7.
Ma, K. F., Mori, J., Lee, S. J. & Yu, S. B., 2001. Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am., 91, 1069-1087.
Ma, S., Archuleta, R. J., & Page, M. T., 2007. Effects of large-scale surface topography on ground motions, as demonstrated by a study of the San Gabriel Mountains, Los Angeles, California, Bull. Seism. Soc. Am., 97, 2066-2079.
MacCormack, R. W., 1969. The effect of viscosity in hypervelocity impact cratering, AIAA Paper, 69–354.
McGuire, J. J., 2004. Estimating finite source properties of small earthquake ruptures, Bull. Seism. Soc. Am., 94, 377–393.
McGuire, J. J., Zhao, L. & Jordan, T. H., 2001. Measuring the second degree moments of earthquake space-time distributions, Geophys. J. Int., 145, 661–678.
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. J. & Ladislav, H., 2002. 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. seism. Soc. Am., 92, 3042–3066.
Mozziconacci, L., Angelier, J., Delouis , B., Rau, R. J., Béthoux , N., & Huang, B. S., 2009. Focal mechanisms and seismotectonic stress in north central Taiwan in relation with the Chi-Chi earthquake, Tectonophysics, 466, 409-426, doi: 10.1016/j.tecto.2007.11.003
Mozziconacci, L., Delouis, B., Huang, B. S., Lee, J. C. & Bethoux, N., 2013a. Determining fault geometry from the distribution of coseismic fault slip related to the 2006 Taitung earthquake, eastern Taiwan, Bull. Seism. Soc. Am., 103, 394–411.
Mozziconacci, L., Huang, B. S., Delouis, B., Lee, J. C. & Lee, S. J. 2013b. Rupture behavior of a moderate earthquake (Mw 5.9, April 2006) and its close relation with the 2003 Chengkung earthquake (Mw 6.8) at the southern termination of the plate boundary, southeast Taiwan, J. Asian Earth Sci., 75, 213–225.
Olson, A. H. & Apsel , R., 1982. Finite fault and inversion theory with applications to the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am., 72, 1969–2001.
Olsen, K. B., Pechmann, J. C. & Schuster, G. T., 1995. Simulation of 3D elastic wave propagation in the Salt Lake Basin, Bull. Seism. Soc. Am., 85, 1688–1710.
Rodgers, A. J., Petersson, N. A. & Sjogreen, B., 2010. Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation, J. Geophys. Res., 115, B11309, doi: 10.1029/2010JB007707.
Sen, M. K. & Stoffa, P. L., 1995. Global Optimization Methods in Geophysical Inversion, Elsevier Science B. V., Amsterdam, The Netherlands, 94 pp.
Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42, 209-226.
Suppe, J., 1981. Mechanisms of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89.
Silver, P. G. & Jordan, T. H., 1983. Total-moment spectra of fourteen large earthquakes, J. Geophys. Res., 88, 3273–3293.
Tam, C. & Webb, J. C., 1993. Dispersion-Relation-Preserving finite difference schemes for computational acoustics, J. Computational Phys., 107, 262–281.
Tang, C.H., 1977. Late Miocene erosional unconformity on the subsurface Peikang High beneath the Chiayi-Yunlin, Coastal Plain, Taiwan, Mem. Geol. Soc. China, 2, 155-167.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76.
Virieux, J., 1984. SH-wave propagation in heterogeneous media – velocitystress finite-difference method, Geophysics, 49, 1933–1942.
Wald, D. J., Worden, B. C., Quitoriano, V., & Pankow, K. L., 2005, ShakeMap manual: technical manual, user′s guide, and software guide: U.S. Geological Survey, 132 p.
Wang, C. Y., Chang, C. H. & Yen, H. Y., 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model, Terr. Atmos. Ocean Sci., 11, 609-630.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K. & Avouac, J. P., 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, doi: 10.1029/2007JB004983.
Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M., 2008. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bull. Seism. Soc. Am., 98, 1471–1481.
Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T. & Wu, C. F., 2006. Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake, Geophys. Res. Lett., 33, L22305, doi: 10.1029/2006GL027572.
Yen, Y. T. & Ma, K. F., 2011. Source-scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan, Bull. Seism. Soc. Am., 101, 464–481.
Yu, S. B., Chen, H. Y. & Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41–59.
Yue, L. F., Suppe, J. & Hung, J. H., 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6), J. of Struct. Geol., 27, 2058-2083.
Zhang, H., Liu, M., Shi, Y., Yuen, D. A., Yan, Z., & Liang, G., 2007. Toward an automated parallel computing environment for geosciences, Phys. Earth planet. Inter., 163, 2–22.
Zhang, W. & Chen, X. F., 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation, Geophys. J. Int., 167, 337–353.
Zhang, W., Zhang, Z. G., & Chen, X.F., 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophys. J. Int., 190, 358-378.
Zhang, Z. G., Shen, Y. & Zhao, L., 2007. Finite-frequency sensitivity kernels for head waves, Geophys. J. Int., 171, 847-856.
Zhao, L., Chen, P. & Jordan, T. H., 2006. Strain Green′s tensors, reciprocity, and their applications to seismic source and structure studies, Bull. Seism. Soc. Am., 96, 1753–1763.
Zhao, L. S. & Helmberger, D. V., 1994. Source estimation from broadband regional seismograms, Bull. Seism. Soc. Am., 81, 91–104.
Zhou, H. & Chen, X. F., 2008. The localized boundary integral equation discrete wavenumber method for simulating P-SV wave scattering by an irregular topography, Bull. Seism. Soc. Am., 98, 265–279.
Zhu, L. & Ben-Zion, Y., 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data, Geophys. J. Int., 194, 839–843.
Zhu, L. & Helmberger, D. V., 1996. Advancement in source estimation techniques using broadband regional seismograms, Bull. Seism. Soc. Am., 86, 1634–1641.
Zhu, L. & Rivera, L. A., 2002. A note on the dynamic and static displacements from a point source in multilayered media, Geophys. J. Int., 148, 619–627.
指導教授 趙里、馬國鳳(Li Zhao Kuo-Fong Ma) 審核日期 2015-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明