博碩士論文 986402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.133.147.252
姓名 林彥宇(Yen-Yu Lin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 TCDP井下地震儀—微地震之觀測與震源特性分析
(TCDP Borehole Seismometers Array – Microearthquake Observations and Seismic Source Characteristics Investigation)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣車籠埔鑽探計畫(Taiwan Chelungpu Drilling Project)之井下地震儀(簡稱TCDPBHS)安裝於1999年集集地震最大同震變形(12 m)之車籠埔斷層北段。井下地震儀所記錄之高品質地震波形,使我們能夠對於研究區域產生之微地震、群組地震的活動情形,及其震源特性進行深入的分析與探討。震源尺度關係一直為地震學家所關心的議題-小地震與大地震的行為是否存在相通性?由於微地震破裂行為暗示地震的發震特性,了解微地震破裂物理,可幫助我們進而探討較大地震的破裂行為。因微地震波形紀錄的訊號雜訊比較低,較難為地表地震儀所記錄,因此需仰賴高品質的井下地震儀,如TCDPBHS。
本研究分析2006年11月至2007年TCDPBHS之紀錄,共270筆微地震(M < 2.0)之分佈發現,集集地震車籠埔斷層北段主要破裂帶上,幾乎沒有任何地震發生。此觀測顯示該區域在集集地震發生時,已將斷層上累積的剪應力完全釋放,故在間震期呈現被鎖定的狀態。區域性微地震(Δtsp < 2 s)分佈在10~15 km深的水平地震帶上,此地震帶可能為臺灣西部褶皺逆衝帶的滑脫面,且位於三義埔里地震帶的北部。其孕震機制可能為滑脫面之形變結果,亦或是為液體富集形成區域弱面,而產生許多微地震。本研究利用交互相關法,搜尋2006年11月至2009年9月共35個月的地震紀錄,共發現287個群組地震。這些群組地震之發震位置與規模大小,均與背景地震活動類似,且其類型多為突發型群組地震-即在短時間內發生數筆地震之後歸於平靜。群組地震之發震間距不規則,顯示本研究區域之孕震機制,與擁有規則性發震間距重複地震的美國加州潛移帶(creeping zone)有很大的差異。群組地震之發震間距有兩個峰值,一為分鐘至小時的尺度(10^-1~10^0 hr),另一則為年的尺度(10^3.5 hr)。此外,本研究也觀測到同一群組地震中,地震規模不同,但P波波形相似的特殊的行為,顯示這些群組地震似乎不遵守地震自我相似的尺度關係。
為了探討微地震的震源尺度關係,本研究利用ω^2震源模型及Q對頻率無關的模型假設,對地震觀測頻譜進行擬合分析並求取震源參數。對242筆規模Mw 0.0~2.0之微地震進行尺度分析發現,應力降與地震矩有正相關的情形,視應力與地震矩也有正相關。為排除路徑效應的干擾,本文利用群組地震其路徑效應相似的特性,使用經驗格林函數法與理論路徑衰減模型修正法,求得地震之震源時間函數Tw,結果發現,無論使用何種方法,Tw均不遵守地震自我相似性的Tw ∝ M0^3。經驗格林函數法及理論路徑衰減模型修正法結果均顯示,無論地震規模大小,Tw為常數。本研究結果為微地震在群組地震中不遵守自我相似性的證據。
TCDPBHS紀錄中發現地震群組中,發震間距為分鐘至小時尺度的地震群組,似乎很難使用應力重新累積的理論解釋,此暗示著特殊的孕震構造。因此,本研究嘗試使用Rate-and-state friction law,模擬短時間重複發震之群組地震行為的極端例子,發震間距為4 s的群組地震。由二維模擬潛移的斷層面上有三個速度弱化(velocity weakening)區域的結果發現,如果增加三個速度弱化的區域之間的破裂障礙強度,並且使用Slip law,破裂障礙間距D約為2 m,可以達到符合短暫重複發震群組地震的觀測,此結果暗示在本研究區域的構造可能並非單一斷層。由三維模擬結果可以證實,若本研究區域液體富集且孔隙液壓變化大(超越50%正向應力),則可模擬出短暫重複發震群組地震行為。
摘要(英) Microearthquakes with magnitude down to 0.3 were detected by the Taiwan Chelungpu fault Drilling Project Borehole Seismometers (TCDPBHS). Despite the large co-seismic slip of 12 m at the drill site during the 1999 Chi-Chi earthquake, our studies show little seismicity near the TCDPBHS drill site 6 years after the Chi-Chi main shock. The microearthquakes clustered at a depth of 9-12 km, where the Chelungpu thrust fault turns from a 30-degree dipping into the horizontal decollement of the Taiwan fold-and-thrust tectonic structure. This observation suggests that the thrust belt above the decollement is locked during this interseismic period. A cross-correlation (CC) was made to the identified microeartqhuakes, 287 clusters were discovered for CC > 0.8. These clusters are mostly burst-type, as which occur in a short time period. The examination of the interseismic time interval within the clusters reveals two significant peaks in time intervals, as if 10^-1~10^0 hr (minutes to hour) and 10^3.5 hrs (year). For the similarity in waveforms, we observed unique earthquake clusters, which have near constant P- and S-wave durations regardless the magnitudes of events within the clusters.
Further studies on source scaling from the investigation of source parameters of 242 microearthquakes, we used SH-wave spectra by fitting ω^2-shaped Brune source spectra with a frequency-independent Q model. We find that the static stress drop increases significantly with increasing seismic moment, and also the similar positive feature for the apparent stress scaling with seismic moment. To avoid the contamination from attenuation, we further analysis the data for events within clusters to remove the path effect of the events in the clusters. The Empirical Green’s function (EGF) and Futterman Q correction methods are utilized. The derived source time function, Tw, from the both methods showed similar feature as the Tw does not follow the earthquake self-similarity scaling of Tw ∝ M0^3. The results obtained a nearly constant Tw with moment. Our observations provide a direct evidence of an earthquake non-self-similarity behavior for events ranging from Mw 0.0 - 2.0 within the cluster.
To explore the potential mechanisms for rapid event recurrence (sec-hour), we developed a model of repeating earthquakes based on rate-and-state friction. In the model, several small patches governed by steady-state velocity-weakening friction are located in a close proximity to each other and surrounded by a larger velocity-strengthening region with a background loading slip rate. Our modeling results indicate that the rapid triggering does not occur in the long-term response with typical lab parameters. However, a model with stronger barriers and slip law of state variable evolution matches the observations, suggesting high heterogeneity of the fault zone. In another way, we develop a model with pore pressure variation indicating fluid flows. The modeling results suggest high pore pressure change ( >50% normal stress) with artificial time drifting may also trigger the rapid triggered seismic clusters.
關鍵字(中) ★ 微地震
★ 井下地震儀
★ 臺灣車籠埔鑽探計畫
★ 微地震尺度分析
★ 群組地震
關鍵字(英) ★ Microearthquake
★ Borehole seismometer
★ TCDP
★ Seismic source scaling
★ Earthquake cluster
論文目次 中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 本文範疇 2
第二章 井下地震儀及資料處理 5
2-1 井下地震儀 5
2-1-1 儀器設計與響應 5
2-1-2 儀器安裝 6
2-1-3 短時間地表微地震觀測網 7
2-2 資料處理 7
2-3 井下地震儀常見的雜訊 9
2-4 TCDPBHS對微地震之偵測能力 10
第三章 微地震觀測 24
3-1 地震事件選取程序 24
3-1-1 地震選取流程 24
3-1-2 人工選取地震(manual Picking)及半自動化選取地震流程(semi-autopicking) 26
3-1-3 地震活動度—2006年11月至2009年10月 29
3-1-4 類別F地震訊號的選取及活動度 29
3-2 微地震定位 30
3-2-1 微地震定位方法 31
3-2-2 微地震定位結果 35
3-2-3 微地震分佈在孕震構造上的暗示 37
3-3 微地震規模估計 39
3-4 微地震震源機制 40
3-4-1 研究方法—P波初動解 40
3-4-2 研究結果及討論 41
3-5 群組地震之觀測 43
3-5-1 群組地震選取方式 44
3-5-2 群組地震之位置、規模與發震時間相關性 45
3-5-3 群組地震在孕震構造上的暗示 47
第四章 微地震之震源特性分析 81
4-1 微地震震源尺度分析 81
4-1-1 微地震震源參數估計 83
4-1-2 估計地震波輻射能量(radiated energy)與視應力(apparent stress) 85
4-1-3 微地震尺度分析-頻譜擬合法 86
4-2群組地震震源尺度分析 87
4-2-1 規模0.3至2.0相同P波波形之微地震觀測 87
4-2-2 群組地震之震源參數估計 89
4-2-3 群組地震之震源尺度分析及討論 92
4-3 短暫重複發震群組地震之震源行為模擬 94
4-3-1 短暫重複發震之群組地震觀測 94
4-3-2 模擬方法—Rate-and-state friction law 95
4-3-3 模型建構與模擬結果 96
4-3-4 討論 98
第五章 結論 130
參考文獻 135
個人著作 143
附錄A 井下地震儀非火山型Tremor訊號之偵測 144
附錄B 地震震源參數(頻譜擬合法) 168
附錄C 群組地震目錄(取樣率200 p/s) 176
附錄D Isotropic Events Observed with a Borehole Array in the Chelungpu Fault zone,Taiwan 189
附錄E Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers 194
參考文獻 Abercrombie, R. E., 1995. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res., 100(12), 24015-24036.
Abercrombie, R. E. & Rice, J. R., 2005. Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406-424.
Ake, J., Mahrer, K., O’Connel, D. & Block, L., 2005. Deep-Injection and Closely Monitored Induced Seismicity at Paradox Valley, Colorado, Bull. Seism. Soc. Am., 95(2), 664-683.
Aki, K., 1967. Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217-1231.
Aki, K. & Richards, P., 2002. Quantitative Seismology, University Science Books, Sausalito, CA, USA.
Ampuero, J. & Rubin, A. M., 2008. Earthquake nucleation on rate-and-state faults : aging and slip laws, J. Geophys. Res., 113, B01302, doi:10.1029/2007JB005082.
Beeler, N. M., Tullis, T. E. & Weeks, J. D., 1994. The roles of time and displacement in the evolution effect in rock friction, Geophys. Res. Lett., 21, 1987–1990.
Beeler, N., Lockner, D. & Hickman S., 2001, A simple stickslip and creep-slip model for repeating earthquakes and its implication for microearthquakes at Parkfield, Bull. Seismol. Soc. Am., 91, 1797–1804.
Blanpied, M. L. & Tullis, T. E., 1986. The stability and behavior of a system with two state variable constitutive law. Pure Appl. Geophys., 124, 415–444.
Boatwright, J., 1980. Detailed spectral analysis of two small New York state earthquakes, Bull. Seism. Soc. Am. 68(4), 1117-1131.
Bona, M. D. & Rovelli, A., 1998. Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motion, Bull. Seism. Soc. Am. 78, 1818-1825.
Boore, D. M., 1986. The effect of finite bandwidth on seismic scaling relationships, Earthquake Source Mechanics, Geophys. Monogr. Ser. 37, pp. 275-283. ed. Das, S., Boatwright, J. & Scholz, C., American Geophysical Union, Washington, D.C., USA.
Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J. & Bouin, M., 2011. Extended nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331, 877-880, doi: 10.1126/science.1197341.
Brune, J., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75(26), 4997-5009.
Byerlee, J. D., 1978. Friction of rocks. Pure Appl. Geophys., 116, 615–626.
Carena, S., Suppe, J. & Kao, H., 2002. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geology, 30(10), 935-938.
Chang, C., Wu, Y., Shin, T. & Wang, C., 2000. Relocation of the 1999 Chi-Chi Earthquake in Taiwan, Terr. Atmos. Ocean. Sci., 11(3), 581-590.
Chang, C., Wu, Y., Zhao, L. & Wu, F., 2007. Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake: The First Hour, Bull. Seism. Soc. Am., 97(4), 1245–1258.
Chen, C. & Chen, C., 2002. Sanyi-Puli conductivity anomaly in NW Taiwan and its implication for the tectonics of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 29(8), 1116-1118.
Chen, K., Huang, B., Wang, J. & Yen, H., 2002. Conjugate thrust faulting associated with the 1999 Chi-Chi Taiwan earthquake sequence, Geophys. Res. Lett., 29(8), 1277-1280.
Chen, T. & Lapusta, N., 2009. Rate and state friction laws can explain scaling of small repeating earthquakes, J. Geophys. Res., 114, B01311, doi:10.1029/2008JB005749.
Chester, J., Chester, F. & Kronenberg, A., 2005. Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437, 133-136, doi:10.1038/nature03942
Daley, T. M. & McEvilly, T. V., 1990. Shear-wave anisotropy in the Parkfield Varian well VSP, Bull. Seism. Soc. Am., 80, 857–869.
Dieterich, J. H., 1979. Modelling of rock friction. Part 1: Experimental results and constitutive equations, J. Geophys. Res., 84(B5), 2161–2168.
Dieterich, J. H., 1981. Constitutive properties of faults withsimulated gouge, Editers: Carter, N. L., Friedman, M., Logan, J. M. & Stearns, D. W., Monograph 24: Mechanical Behavior of Crustal Rocks, 103–120. Washington, DC, AGU.
Dieterich, J. H., 2007. Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence, Treatise Geophys., 4, 107-129.
Dong, J., Hsu, J., Wu, W., Shimamoto, T., Hung, J., Yeh, E., Wu, Y. & Sone, H., 2010. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, 47(7), 1141-1157.
Duputel, Z., Tsai, V. C., Rivera, L. & Kanamori, H., 2013. Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics, Earth Planet Sci. Lett., 375, 92-100.
Ellsworth, W. L. & Dietz, L. D., 1990. Repeating earthquakes: Characteristics and implications, in Proceedings of Workshop XLVI: The 7th U.S.-Japan Seminar on Earthquake Prediction, U.S. Geol. Surv. Open File Rep., 90– 98, 226– 245.
Eshelby, J. D., 1957. The determination of the elastic held of an ellipsoidal inclusion and related problems, Proc. R. Soc. London, 241, 376-396.
Futterman, W., 1962. Dispersive body waves, J. Geophys. Res., 67(13), 5279–5291.
Gibowicz, S. J., Young, R. P., Talebi, S. & Rawlence, D. J., 1991. Source parameters of seismic events at the underground research laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than -2, Bull. Seism. Soc. Am., 81(4), 1157–1182.
Hanks, T. C., 1982. fmax, Bull. Seism. Soc. Am. 72(6), 1867-1879.
Harrington, R. & Brodsky, E., 2009, Source duration scales with magnitude differently for earthquakes on the San Andreas fault and on secondary faults in Parkfield, California, Bull. Seismol. Soc. Am., 99, 2323–2334.
Hirata, N., Sakai, S., Liaw, Z., Tsia, Y. & Yu, S., 2000. Aftershock observations of the 1999 Chi-Chi, Taiwan earthquake, Bull. Earthq. Res. Inst. Tokyo Univ., 75, 33-46.
Hough, S. E., 1996. Observational constraints on earthquake source scaling: Understanding the limits in resolution, Tectonophysics, 261, 83-96.
Hsu, Y., Bechor, N., Segall, P., Yu, S., Kao, L. & Ma, K, 2002. Rapid afterslip following the 1999 Chi-Chi Taiwan earthquake, Geophys, Res. Lett., 29, 10.1029/2002GL014967.
Hsu, Y., Avouac, J., Yu, S., Chang, C., Wu, Y. & Woessner, J., 2009. Spatio-temporal slip, and stress level on the faults within the western foothills of Taiwan: Implications for fault frictional properties. Pure Appl. Geophys., 166, 1853-1884.
Hung, J., Wu, Y., Yeh, E., Wu, J. & TCDP scientific party, 2007. Subsurface structure, physical properties and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault drilling project, Terr. Atmos. Ocean. Sci., 18(2), 271-293.
Ide, S. & Beroza, G. C., 2001. Does apparent stress vary with earthquake size?, Geophys. Res. Lett., 28(17), 3349-3352.
Ide, S., Beroza, G. C., Prejean, S. G. & Ellsworth, W. L., 2003. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings, J. Geophys. Res., 108(5), 2271-2284.
Ide, S., Matsubara, M. & Obara, K., 2004. Exploitation of high-sampling Hi-net data to study seismic energy scaling: The aftershocks of the 2000 western Tottori, Japan, earthquake, Earth Planets Space, 56, 859-871.
Igarashi, T., Matsuzawa, T., & Hasegawa, A., 2003. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone, J. Geophys. Res,. 108, p2249.
Imanishi, K., Ellsworth, W. L. & Prejean, S. G., 2004. Earthquake source parameters determined by the SAFOD Pilot Hole seismic array, Geophys. Res. Lett., 31, L12S09.
Jost, M. L., Bubelberg, T., Jost, O. & Harjes, H. P., 1998. Source parameters of injection-induced microearthquakes at 9 km depth at the KTB Deep drilling site, Germany, Bull. Seism. Soc. Am., 88(3), 815-832, 1998.
Ji, C., Helmberger, D. V., Song, T. A., Ma, K. & Wald, D. J., 2001. Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 28 (23), 4379-4382.
Kanamori, H., 1977. The Energy Release in Great Earthquakes, J. Geophys. Res., 82(20), 2981–2987.
Kanamori, H., Mori, J., Haukasson, E., Heaton, T. H., Hutton, L. K. & Jones, L. M., 1993. Determination of earthquake energy release and ML using TERRASCOPE, Bull. Seism. Soc. Am., 83(2), 330-346.
Kanamori, H. & Brodsky, E. E., 2004. The physics of earthquake, Rep. Prog. Phys., 67, 1429-1496.
Kilgore, B. D., Blanpied, M. L. & Dieterich, J. H., 1993. Velocitydependent friction of granite over a wide range of conditions, Geophys. Res. Lett., 20, 903–906.
Kim, K., Chiu, J., Pujol, J., Chen, K., Huang, B., Yeh, Y. & Shen, P., 2005. Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204-220.
Kimura, H., Kasahara, K., Igarashi, T. & Hirata N., 2006, Repeating earthquake activities associated with the Philippine Sea plate subduction in the Kanto district, central Japan: a new plate configuration revealed by interplate aseismic slips, Tectonophysics, 417, p101–118.
Lanza, V., Spallarossa, D., Cattaneo, M., Bindi, D. & Augliera, P., 1999. Source parameters of small events using constrained deconvolution with empirical Green’s functions, Geophys. J. Int., 137, 651-662.
Lapusta, N., Rice, J. R., Ben-Zion, Y. & Zheng, G., 2000. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction, J. Geophys. Res., 105, 23765-23789, 2000.
Lapusta, N. & Liu, Y., 2009. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip, J. Geophys. Res,. 114, doi:10.1029/2008JB005934.
Lay, T. & Wallace, T., 1995, Modern global seismology, San Diego: Academic Press., San Diego, CA, USA.
Leonard, M. & Kennett, B., 1999. Multi-component autoregressive techniques for the analysis of seismograms, Physics of the Earth and Planetary Interiors, 113, 247-263.
Lin, C., 2001. The 1999 Taiwan earthquake: a proposed stress-focusing, heel-shaped model, Bull. Seism. Soc. Am., 91(5), 1053-1061
Lin, Y., Ma, K. & Oye, V., 2012, Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers, Geophys. J. Int., 190, 665-676.
Linker, M. F., & Dieterich, J. H., 1992. Effects of variable normal stress on rock friction: Observations and constitutive relations. J. Geophys. Res., 97, 4923–4940.
Ma, K., Chan, C. & Stein, R. S., 2005. Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110, B05S19.
Ma, K., Tanaka, H., Song, S., Wang, C., Hung, J., Tsai, Y., Mori, J., Song, Y., Yeh, E., Soh, W., Sone, H., Kuo, L. & Wu, H., 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473-476.
Ma, K, Lin, Y., Lee, S., Mori, J. & Brodsky, E. E., 2012. Evidence on Isotropic Events Observed with a Borehole Arrary in the Chelungpu Fault Zone, Taiwan, Science, 337, 459-463, doi: 10.1126/science.1222119
Marone, C. & Kilgore, B, 1993. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones, Nature, 362, 618–621.
Marone, C., Vidale, J. & Ellsworth, W., 1995. Fault healing inferred from time dependent variations in source properties of repeating earthquake, Geophys. Res. Lett., 22, 3095-3098.
Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643–696.
Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math, 11(2), 431–441.
Mayeda, K. & Walter, W., 1996. Moment, energy, stress drop and source spectra of western United States earthquakes from regional coda envelopes, J. Geophys. Res., 101(5), 11195-11208.
Mayeda, K. & Malagnini, L., 2009. Apparent stress and corner frequency variations in the 1999 Taiwan (Chi-Chi) sequence: Evidence for a step-wise increase at Mw ~ 5.5, Geophys. Res. Lett., 36, L10308.
Mori, J., Abercrombie, R. E. & Kanamori, H., 2003. Stress drops and radiated energies of aftershocks of the 1994 Northrigde, California, earthquake, J. Geophys. Res., 108(11), 2545-2557.
Nadeau, R., Foxall, W., & McEvilly, T., 1995, Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California, Science, 267, 503–507.
Nadeau, R. & McEvilly, T., 1997, Seismological studies at Parkfield V: Characteristic microearthquake sequences as fault-zone drilling targets, Bull. Seismol. Soc. Am., 87, 1463-1472.
Nadeau, R. & Johnson, L., 1998, Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes. Bull. Seismol. Soc. Am., 88, 790-814.
Nadeau, R., & McEvilly, T., 1999, Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718–721.
Nishigami, K., Ando, M. & Tadokoro, K., 2001. Seismic observation in the DPRI 1800m borehole drilled into the Nojima fault zone, south-west Japan, The Island Arc, 10, 288-295.
Oye, V. & Roth, M., 2003. Automated seismic event location for hydrocarbon reservoirs, Computers & Geosciences, 29, 851-863.
Oye, V., Chavarria, J. A. & Malin, P. E., 2004. Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data, Geophys. Res. Lett., 31, L12S10.
Oye, V., Bungum, H. & Roth, M., 2005. Source parameters and scaling relations for mining-related seismicity within the Pyhasalmi Ore Mine, Finland, Bull. Seism. Soc. Am., 95(3), 1011-1026.
Oye, V. & Ellsworth, W. L., 2005. Orientation of three-component geophones in the San Andreas Observatory at Depth Pilot Hole, Parkfield, California, Bull. Seism. Soc. Am., 95(2), 751–758.
Oye, V., Roth, M. & Bungum, H., 2006. Source parameters determined from microearthquakes in an Underground Ore Mine, Geophys. Monogr. Ser. 170, ed: Abercrembie, R. E., McGarr, A., Toro, G. & Kanamori, H., American Geophysical Union, Washington, D. C., 75-80.
Reasenberg, P. A. & Oppenheimer, D., 1985. FPFIT, FPPLOT, and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions, U.S. Geol. Surv. Open-File Rep. 85-739.
Rubin, A. M., & Ampuero, J., 2005. Earthquake nucleation on (aging) rate-and-state faults, J. Geophys. Res., 110, B11312, doi:10.1029/2005JB003686.
Ruina, A. L., 1983. Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370.
Sammis, C., & Rice, J., 2001, Repeating earthquakes as low-stressdrop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am., 91, p532–537.
Sato, T. & Hirasawa, T., 1973. Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415-431.
Schaff, D., Beroza, G. & Shaw, B., 1998, Postseismic response of repeating aftershocks, Geophys. Res. Lett., 25, 4549–4552.
Scherbaum, F., 1990. Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra, J. Geophys. Res., 95(12), 423-428.
Stesky, R. M., 1978. Rock friction – effect of confining pressure, temperature, and pore pressure, Pure Appl. Geophys., 116, 690–704.
Shearer, P. M., Prieto, G. A. & Hauksson, E., 2006. Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.
Singh, S. K. & Ordaz, M., 1994. Seismic energy release in Mexican subduction zone earthquakes, Bull. Seism. Soc. Am., 84(5), 1533-1550, 1994.
Stork, A. L. & Ito, H., 2004. Source Parameter Scaling for Small Earthquakes Observed at the Western Nagano 800-m-Deep Borehole, Central Japan, Bull. Seism. Soc. Am., 94(5), 1781-1794.
Tadokoro, K., Ando, M. & Nishigami, K., 2000. Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration, J. Geophys. Res, 105(3), 6089-6104.
Templeton, D., Nadeau, R. & Burgmann, R., 2008. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep, Bull. Seismol. Soc. Am., 98, 52–65.
Thurber, C., Roecker, S., Roberts, K., Gold, M., Powell, L. & Rittger, K., 2003. Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas fault near Parkfield, CA: Preparing for SAFOD, Geophys. Res. Lett., 30(3), 1112-1115.
Tullis, T. E. & Weeks, J. D., 1986. Constitutive behavior and stability of frictional sliding in granite. Pure Appl. Geophys., 124, 383–314.
Tullis, T. E., 1988. Rock friction constitutive behavior from laboratory experiments and its implications for and earthquake prediction field monitoring program. Pure Appl. Geophys., 126, 555–588.
Uchida, N., Matsuzawa, T., Hasegawa, A. & Igarashi, T., 2003. Interplate quasi-static slip off Sanriku, NE Japan, estimated from repeating earthquakes, Geophys. Res. Lett., 30, 1801
Venkataraman, A., Beroza, G. C., Ide, S., Imanishi, K., Ito, H. & Iio, Y., 2006. Measurements of spectral similarity for microearthquakes in western Nagano, Japan, J. Geophys. Res., 111, B03303.
Vidale, J., Ellsworth, W., Cole, A. & Marone, C., 1994. Variations in rupture process with recurrence interval in a repeated small earthquake, Nature, 368, 624–629.
Vidale, J., Boyle, K., Shearer, P., 2006. Crustal earthquake bursts in California and Japan: Their patterns and relation to volcanoes, Geophys. Res. Lett., 33, L20313.
Vidale, J. and Shearer, P., 2006. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers, J. Geophys. Res., 111, B05312.
Wang, Y., Ma, K., Mouthereau, F. & Eberhart-Phillips, D., 2010. Three dimensional Qp- Qs-Tomography beneath Taiwan Orogenic Belt: Comparison to the Tectonic and the Thermal Structure, Geophys. J. Int., 180, 891–910.
Wang, Y., Lin, Y., Ma, K. & Lee, M., 2012. Fault zone Q values derived from Taiwan Chelungpu Fault borehole seismometers (TCDPBHS), Tectonophysics, 578, 76-86, doi:10.1016/j.tecto.2011.12.027.
Wu, Y., Chang, C., Zhao, L., Shyu, J. B. H., Chen, Y., Sieh, K. & Avouac, J., 2007. Seismic tomorgraphy of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312.
Wu, Y. M., Chang, H., Zhao, L., Teng, L. & Nakamura, M., 2008. A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005, Bull. Seism. Soc. Am., 98, 1471–1481, doi:10.1785/0120070166.
Wu, H., 2009. Physical properties and modeling stress heterogeneity in Chelungpu fault vicinity Dakeng, Taiwan, PhD thesis, National Central University, Taiwan.
Yamada, T., Mori, J., Ide, S., Abercrombie, R. E., Kawakata, H., Nakatani, M., Iio, Y. & Ogasawara, H., 2007. Stress drops and radiated seismic energies of microearthquakes in a South African gold mine, J. Geophys. Res., 112, B03305.
Yue, L., Suppe, J. & Hung, J., 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw = 7.6), J. Struct. Geol., 27(11), 2058-2083.
王郁如,「台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型」,國立中央大學,碩士論文,2004年。
李錦發、林朝宗、賴典章及劉昭宏,集集大地震地表破裂機制之探討,經濟部地質調查所特刊第十二號,第155-169頁,民國89年。
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2014-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明