博碩士論文 986403004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:52.15.209.168
姓名 蘇泳誌(Yung-Chih Su)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 利用全球全電子含量圖偵測地震電離層空間前兆
(Detect seismo-ionospheric spatial precursors in the total electron content of global ionosphere maps)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 電離層赤道異常區電場季節性變化之研究: 理論模擬與中華衛星一號觀測之比較★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化
★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較★ 電離層地震前兆之研究
★ 電離層波動垂直能量傳播之研究★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究
★ 台灣地區中界層於第22-23太陽週期間之特性研究★ 利用全球定位系統觀測電離層地震前兆
★ 臺灣地區電離層季節異常與太陽活動之相關性研究★ 台灣地區地震與閃電之研究
★ 台灣地區地震前之電離層電子濃度異常★ 磁暴時低緯度電離層變化
★ 場向電漿飄移速度的理論模擬研究與觀測資料之比較★ 電離層赤道異常與赤道電噴流
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,大量研究關注於大地震前的電磁異常和相關現象,而在這些研究之中,全球定位系統全電子含量(TEC)之地震電離層前兆為最重要的一環。本論文利用全球全電子含量圖(GIM)之TEC進行時間與空間分析,搜尋可能之地震電離層前兆。對某一固定點的TEC時間序列進行檢驗,以偵測地震前兆(單點TEC變化監測)。每一時間點,以前15日之資料計算移動中位數和上、下四分數作為參考值,探測於觀測日(第16日)的異常訊號。當觀測之TEC高於上界或低於下界,則視為探測到正異常或負異常。為了解探測到的異常是否為可能之地震電離層時間前兆,應用Z檢定統計相同地區大量地震之TEC異常,以找出此地區時間前兆的特性,包括正負極性、出現的當地時間和領先日期等。在地磁寧靜期,探測到的異常與統計的特性吻合時,表示此異常為可能之時間前兆。沿監測點經線上的TEC(即緯度-時間圖監測)也被用來探測並確認地震電離層前兆。此外,電離層易受到太陽輻射、磁暴等效應所擾亂,而出現正和負異常。為了區分區域效應(如:地震)和全球效應(如:太陽擾動、磁暴),則進行TEC異常和其梯度異常之全球分布檢驗(即緯度-經度圖監測),若異常頻繁或持續出現在探測到時間前兆的地區,則視為探測到空間前兆。
本論文研究分析2010年1月12日規模7.0海地地震、1999年10月16日規模7.1美國赫克托麥地震、2004年12月26日規模9.1印尼蘇門答臘地震和2011年3月11日規模9.0日本東北地震之GIM TEC地震電離層時空前兆。結果顯示其時間前兆為:海地地震前1日和東北地震前3日出現正異常,而蘇門答臘地震前5日出現負異常。赫克托麥地震的時間前兆較為不明確,在震前7–5日出現兩種極性之異常。緯度-時間圖則呈現,海地地震前1日在震央緯度和共軛點緯度的TEC顯著增加,東北地震前3日於赤道異常區的TEC顯著增加,而蘇門答臘地震前5日其北赤道異常區的TEC明顯減小。緯度-經度圖進一步呈現蘇門答臘地震前5日和東北地震前4–3日,分別有TEC 30日極大負和正異常頻繁、持續和固定地出現在蘇門答臘地震震央東南方1000–1600 km和東北地震震央東北方800 km。這兩個地震之梯度異常並沒有十分明顯。另一方面,規模7.0海地地震前1日,TEC 30日極大正異常持續和固定地出現在震央西北方1000–2700 km,而東向梯度負異常則持續出現於震央東北方900 km。此外,規模7.1赫克托麥地震前6–5日,北向梯度負異常持續出現在震央西方1300 km。梯度異常似乎對此兩個規模相對較小的地震更為靈敏。儘管四個地震案例的相關異常與震央之距離約數千公里,然而與地震準備帶的尺度相比,蘇門答臘和東北地震的TEC異常位置非常靠近震央。經本論文的邏輯實證判斷,四個地震案例皆偵測到地震電離層空間前兆。最後,電離層異常經常同時出現在震央和共軛點上,說明地震伴生電場的重要性。
摘要(英) Recently, seismo-electromagnetic anomalies and related phenomena before large earthquakes have intensively studied. Among these existing studies, the seismo-ionospheric precursors (SIPs) of the GPS total electron content (TEC) is the most promising one. In this dissertation, to search SIPs, the global ionosphere map (GIM) of the TEC is employed, while both temporal and spatial analyses are conducted. In a certain region, to see if there is a forthcoming earthquake, a time series of the TEC at a fixed location (TEC variation, a point, zero-dimensional, monitoring) of the region is examined. At each time point, the previous 15-day running data are used to compute the median and upper/lower quartile constructing a reference for detecting anomalies on the observation (16th) day. When the observed TEC exceeds its upper or lower bounds, it can declare that a positive or negative anomaly is detected. To see if the detected anomaly is a temporal SIP, TEC anomalies associated with a large amount of earthquakes in the same region are statistically investigated by z test to find the characteristics of the temporal SIP, which are the polarity of positive/negative, the appearing local time period, the leading day, etc. When the detected anomaly meets the associated characteristics during the magnetic quiet, it can be considered to be a temporal precursor. Here, the TEC along the monitoring point longitude (Latitude-Time-TEC (LTT), a line, one-dimensional, monitoring) is also employed to confirm the SIP detection. On the other hand, the ionosphere can be easily disturbed by solar radiations, magnetic storms, etc. and reveals both positive and negative anomalies. To discriminate effects of the local (such as, earthquakes) from those of the global (such as, solar disturbances, magnetic storms), the global distributions of anomalies in the GIM TEC (i.e. Latitude-Longitude-TEC (LLT), two-dimensional, monitoring) and the associated gradient are examined. If anomalies frequently and persistently appear near the monitoring region, where the temporal SIP is detected, it can declare the spatial precursors being detected.
The temporal and spatial SIPs of the GIM TEC associated with the 12 January 2010 Mw7.0 Haiti Earthquake, the 16 October 1999 Mw7.1 Hector Mine Earthquake, the 26 December 2004 Mw9.1 Sumatra Earthquake, and the 11 March 2011 Mw9.0 Tohoku Earthquake are investigated. Results show that the temporal SIPs are the positive anomalies appearing 1 day before the Haiti Earthquake, and 3 days before the Tohoku Earthquake, but the negative anomalies occurring 5 days before the Sumatra Earthquake. The temporal SIP of the Hector Mine Earthquake is unclear, which seems having dual polarities of positive and negative appearing 7-5 days before the earthquake. Likewise, the LTT plots reveal that the TEC significantly enhances at the epicenter- and conjugate-latitude 1 day before the Haiti Earthquake, the TECs at the equatorial ionization anomaly (EIA) region considerably increase 3 days before the Tohoku Earthquake, while the TEC of the northern EIA extensively reduces 5 days before the Sumatra Earthquake. The LLT map further show that the TEC anomalies of 30-day extreme minimum and maximum frequently, persistently, and specifically appear at 1000-1600km southeast from the epicenter, 5 days before the Sumatra Earthquake, and at 800 km northeast from the epicenter, 4-3 days before the Tohoku Earthquake, respectively. There is no obvious gradient anomaly can be found of these two devastating earthquakes. On the other hand, for the Mw7.0 Haiti Earthquake, the TEC anomalies of 30-day extreme maximum persistently and specifically appear at 1000-2700km northwest from the epicenter, 1 day before, while anomalies of the associated westward gradient persistently appear at 900km northeast from the epicenter. For the Mw7.1 Hector Mine Earthquake, anomalies of the southward gradient continuously appear at 1300km west from the epicenter, 6-5 days before. It seems that the gradient anomalies are more sensitive to these two relatively smaller earthquakes. In general, the distances of the associated anomaly from the epicenter of the four earthquakes are approximate thousands km. However, comparing the earthquake preparation area, the anomalies are in fact very close to the epicenter of the Sumatra Earthquake and the Tohoku Earthquake. Finally, it can be seen that the anomalies often appear concurrently over the epicenter and the conjugate points, which indicates that the seismo-generated electric field are essential.
關鍵字(中) ★ 電離層
★ 地震前兆
★ 地震電離層前兆
★ 全球全電子含量圖
★ 全電子含量
關鍵字(英) ★ ionosphere
★ earthquake precursor
★ seismo-ionospheric precursor
★ global ionosphere map
★ total electron content
論文目次 中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vii
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 觀測與分析 6
2.1 電離層太空天氣與地震電磁現象 6
2.2 全球全電子含量圖 9
2.3 分析方法 14
第三章 地震電離層前兆個案分析 16
3.1 海地地震電離層前兆 17
3.2 赫克托麥地震電離層前兆 44
3.3 蘇門答臘地震電離層前兆 63
3.4 日本東北地震電離層前兆 80
第四章 討論與結論 96
參考文獻 100
參考文獻 [1] Bleier, T., and F. Freund, Earthquake alarm, IEEE Spectrum (December Issue), 22-27, 2005.
[2] Davies, K., Ionospheric Radio, Peter Peregrinus Ltd., London, United Kingdom, 1990.
[3] Dobrovolsky, I. P., S. I. Zubkov, and V. I. Miachkin, Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 117, 1025–1044, doi:10.1007/BF00876083, 1979.
[4] Freund, F., Time-resolved study of charge generation and propagation in igneous rocks, J. Geophys. Res., 105, 11,001 – 11,019, doi:10.1029/1999JB900423, 2000.
[5] Freund, F., Pre-earthquake signals: Underlying physical processes, J. Asian Earth Sci., 41, 383–400, doi:10.1016/j.jseaes.2010.03.009, 2011.
[6] Hayakawa, M. (Eds), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra Sci. Pub. Co., Tokyo, 1999.
[7] Hunsucker, R. D., Radio Techniques for Probing the Terrestrial Ionosphere, Springer, New York, 1991.
[8] Kelley, M. C., The Earth’s Ionosphere, 2nd ed., Academic, London, 2009.
[9] Liu, J. Y ., H. F.Tsai, and T.K .Jung, Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci., 7, 107-117, 1996.
[10] Liu, J. Y., Y. I. Chen, S. A. Pulinets, Y. B. Tsai, and Y. J. Chuo, Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes, Geophys. Res. Lett., 27, 3113-3116, 2000.
[11] Liu, J. Y., Y. I. Chen, Y. J. Chuo, and H. F. Tsai : Variations of ionospheric total electron content during the Chi-Chi Earthquake, Geophys. Res. Lett., 28, 1383-1386, 2001.
[12] Liu, J. Y., Y. J. Chuo, S. J. Shan, Y. B. Tsai, Y. I. Chen, S. A. Pulinets, and S. B. Yu, Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys., 22, 1585–1593, doi:10.5194/angeo-22-1585-2004, 2004
[13] Liu, J. Y., Y. I. Chen, C. H. Chen, C. Y. Liu, C. Y. Chen, M. Nishihashi, J. Z. Li, Y. Q. Xia, K. I. Oyama, K. Hattori, and C. H. Lin, Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake, J. Geophys. Res., 114, A04320, doi:10.1029/2008JA013698, 2009.
[14] Liu, J. Y., Y. I. Chen, C. H. Chen, and K. Hattori, Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra–Andaman Earthquake, J. Geophys. Res., 115, A09312, doi:10.1029/2010JA015313, 2010a.
[15] Liu, J. Y., Chen, C. H., Chen, Y. I., Yang, W. H., Oyama, K. I., and Kuo, K. W., A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007, J. Asian Earth Sci., 39, 76–80, 2010b.
[16] Liu, J. Y., H. Le, Y. I. Chen, C. H. Chen, L. Liu, W. Wan, Y. Z. Su, Y. Y. Sun, C. H. Lin, and M. Q. Chen, Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake, J. Geophys. Res., 116, A04302, doi:10.1029/2010JA015704, 2011a.
[17] Liu, J. Y., C. H. Chen, C. H. Lin, H. F. Tsai, C. H. Chen, and M. Kamogawa, Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake, J. Geophys. Res., 116, A06319, doi:10.1029/2011JA016761, 2011b.
[18] Liu, J. Y., W. H. Yang, C. H. Lin, Y. I. Chen, and I. T. Lee, A statistical study on the characteristics of ionospheric storms in the equatorial ionization anomaly region: GPS-TEC observed over Taiwan, J. Geophys. Res. Space Physics, 118, 3856–3865, doi:10.1002/jgra.50366, 2013a.
[19] Liu, J. Y., C. H. Chen and H. F. Tsai, A statistical study on seismo-ionospheric precursors of the total electron content associated with 146 M≥6.0 earthquakes in Japan during 1998–2011, Earthquake Prediction Studies: Seismo Electromagnetics, edited by M. Hayakawa, pp. 1–13. TERRAPUB, 2013b.
[20] Molchanov, O. A. and M. Hayakawa, Subionospheric VLF signal perturbations possibly related to earthquakes, J. Geo. Res., 103, 17,489-17,504, 1998.
[21] Pulinets, S. A., Seismic activity as a source of ionospheric variability, Adv. Space Res., 22, 903-906, 1998.
[22] Pulinets, S. A., and K. A Boyarchuk., Ionospheric Precursors of Earthquakes, Springer Verlag Publ, 2004.
[23] Pulinets, S. A., A. N. Kotsarenko, L. Ciraolo, and I. A. Pulinets, Special case of ionospheric day-to-day variability associated with earthquake preparation, Adv. Space Res., 39, 970–977, doi:10.1016/j.asr.2006.04.032, 2007.
[24] Pulinets, S.A., Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res., 44, 767–773, doi:10.1016/j.asr.2009.04.038, 2009.
[25] Schaer S., Mapping and predicting the earth’s ionosphere using the global positioning system. Dissertation, University of Bern, 1999.
[26] Su, Y. C., J. Y. Liu, S. P. Chen, H. F. Tsai, and M. Q. Chen, Temporal and spatial precursors in ionospheric total electron content of the 16 October 1999 Mw7.1 Hector Mine earthquake, J. Geophys. Res. Space Physics, 118, 6511–6517, doi:10.1002/jgra.50586, 2013.
[27] Sugiura, M., and S. Chapman, The average morphology of geomagnetic storms with sudden commencement, Abhandl. Akad. Wiss. Gotingen. Mah. Phys. Kl. Sondeheft, K1(4), 1960.
[28] Yue, X., W. Wan, L. Liu, H. Le, Y. Chen, and T. Yu, Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment, Chin. Sci. Bull., 53(1), 94–101, doi:10.1007/s11434-007-0462-z, 2008.
指導教授 陳明桂、劉正彥(Ming-Quey Chen Jann-Yenq Liu) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明