博碩士論文 986403007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:159 、訪客IP:3.138.204.208
姓名 孫楊軼(Yang-Yi Sun)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 全球定位系統之電離層天氣應用
(GPS Applications on Ionospheric Weather)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 精準測知當下電離層天氣(ionospheric weather)之活動情形,對於預警電離層天氣對電磁波通訊和導航系統的干擾極其重要。電離層電漿密度結構能對電磁波產生影響,而此影響亦能用於推估全球定位系統(Global Positioning System, GPS)衛星與接收機之間的全電子含量(total electron content, TEC)。鑒於此,本論文運用地基(ground-based)與天基(space-based) GPS觀測全球電離層電漿密度變化,對區域和全球性的電離層天氣活動進行深入研究。
地基GPS接收機廣布全球大陸,能高效且經濟地提供高時間解析度之TEC觀測。而GPS掩星(radio occultation)系統如福爾摩沙衛星三號(FORMOSAT-3/COSMIC)能提供全球均勻分佈之三維電離層電子密度數據,填補地基GPS接收機在海洋、沙漠與極區的觀測空缺。此外,由於電磁層資料通常稀疏(sparse)且複雜,簡單的資料分析方法與傳統的簡諧(harmonic)和穩態(stationary)假設不足以從觀測數據呈現現象的完整面貌。因此本論文使用較進階的方法,如非線性(nonlinear)與非穩態(non-stationary)數學方法、統計工具、資料同化(data assimilation)技術和物理模式,對GPS觀測之電離層天氣現象進行分析。
本論文第一章簡介地球電離層與電離層天氣。第二章簡介地基與天基之GPS觀測資料。第三至第六章以四個太空天氣案例對GPS資料及其分析方法的使用進行深入探討。第三章使用非線性非穩態的時頻分析方法,希爾伯特黃轉換(Hilbert-Huang transform, HHT),分析地基GPS TEC後發現全日蝕能於地球電離層中產生船艏波。第四與第五章分別研究磁暴對低緯與中緯電漿密度不規則體之影響。研究結果有助於臆測磁暴後不規則體之產生與消失。第五章率先使用非穩態的“小波共變異數(wavelet-based covariance)”建立區域性的全電子含量圖(TEC map),此圖有助於研究極光橢圓區附近小尺度的電漿密度結構。第六章建立“模式中性風偏差修正程序(model neutral wind bias correction scheme)”以精進“電離層電漿層電動模式(Ionosphere Plasmasphere Electrodynamics model, IPE)”模擬中緯電離層電子濃度之能力。經由比較IPE模式之模擬與福衛三號掩星之觀測結果後發現,“南半球中緯夏季夜間電子濃度異常/威德海異常(Southern Hemisphere Midlatitude Summer Nighttime Anomaly / Weddell Sea Anomaly, MSNA/WSA)”之東向漂移現象主要由中性風沿地球磁場分量所控制。此四項研究結果顯示,藉由GPS能監測區域或全球性快速改變之電離層天氣。其物理機制將於正文深入驗證與討論。
摘要(英) Precisely knowing the current state of the rapidly changing ionospheric weather is important for warning about its impact on modern telecommunication and navigation systems. The effect of the ionosphere on radio waves transmitting from a satellite to a receiver can be used to estimate the plasma density along a signal path with measurements of the modulations on carrier phases and code pseudoranges recorded by dual-frequency receivers. Therefore, this thesis presents applications of global measurements of electron density from the ground- and space-based GPS observational systems to the in-depth investigation of the regional and global ionospheric weather events.
The ground-based GPS receivers, which are distributed widely over the world’s continents, provide us with an efficient and economic way to monitor the total electron contents (TECs, 1 TEC unit (TECU)=1016 el/m2) with high temporal resolutions. While the radio occultation (RO) observational systems, such as FORMOSAT-3/COSMIC (F3/C), measures the three-dimensional ionospheric electron density globally, including the oceans, deserts, and polar regions, where ground-based observatories are scarce. Since the ionospheric weather-generated signals measured by observational instruments are usually sparse and complicated (nonlinear and non-stationary), simple data process procedures and traditional harmonic and stationary assumptions may not be sufficient to expose the full aspects of the weather phenomena. Therefore, the objective of this thesis is to demonstrate how the analysis of GPS data can be aided with more advanced methods, such as statistical tools, nonlinear and non-stationary mathematical methods, data assimilation techniques, and a physical-based model.
After generally introducing the Earth’s ionosphere and ionospheric weather (Chapter 1) as well as the ground- and space-based GPS observational systems (Chapter 2), four events are investigated in detail. Chapter 3 shows the solid evidence of the eclipse-triggered bow wave with the help of the nonlinear and non-stationary time frequency data analysis method, the Hilbert-Huang transform (HHT). Chapters 4 and 5 are studies of ionospheric plasma density irregularities at low latitude and midlatitude, respectively, during geomagnetic storms. The results can help us to hypothesize the possible behavior of irregularities after storm onsets. In Chapter 5, the TEC maps are constructed by using the non-stationary wavelet-based covariance to study the finer-scale TEC structures near the auroral oval. Chapter 6 proposes a model neutral wind bias correction scheme to improve the electron density of the global physics-based Ionosphere Plasmasphere Electrodynamics (IPE) model at midlatitude. The agreement between the F3/C observations and the model simulations reveals that the eastward movement of the Southern Hemisphere Midlatitude Summer Nighttime Anomaly (southern MSNA) / Weddell Sea Anomaly (WSA) in the local time coordinate is primarily caused by the field-aligned projection of thermospheric neutral winds. The four studies shown in this thesis reveal that the GPS observational systems are capable of recording fully the features of the fast changing ionospheric weather on both regional and global scales. The physical mechanisms behind the ionospheric weather features are further examined and discussed.
關鍵字(中) ★ 電離層天氣
★ 全球定位系統
★ 福爾摩沙衛星三號
★ 地磁暴
★ 資料同化
★ 電漿密度不規則體
★ 日蝕
關鍵字(英) ★ Ionospheric weather
★ GPS
★ FORMOSAT-3/COSMIC
★ Geomagnetic storm
★ Data assimilation
★ Plasma density irregularity
★ Solar eclipse
論文目次 摘要 i
Abstract ii
Acknowledgement iv
Table of Contents v
List of Figures vii

Chapter 1. Introduction 1
1.1 Ionosphere 1
1.2 Ionospheric Weather 2
1.3 Motivation and Objective 11

Chapter 2. GPS Observations 12
2.1 Ground-Based GPS TEC 12
2.2 FORMOSAT-3/COSMIC 15

Chapter 3. Total Solar Eclipse-Triggered Bow Waves 17
3.1 Hilbert-Huang Transform 17
3.2 Total Solar Eclipse on 22 July 2009 18
3.3 Discussion and Conclusion 30

Chapter 4. Low-Latitude F-region Irregularities Response to Magnetic Storms 33
4.1 GPS TEC Phase Fluctuation 33
4.2 Climatology of Low-Latitude F-Region Irregularity 36
4.3 Suppression Signatures in High-Irregularity Activity Season 42
4.4 Triggering Signatures in Low-Irregularity Activity Season 48
4.5 Discussion and Conclusion 56

Chapter 5. Storm-Enhanced Density and Irregularities 60
5.1 Construction of Complete TEC Map 60
5.2 Storm on 31 March 2001 69
5.3 Storm on 30 October 2003 74
5.4 Discussion and Conclusion 81

Chapter 6. Assimilative Wind Correction and Southern MSNA/WSA 84
6.1 Ionosphere Plasmasphere Electrodynamics Model 84
6.2 Assimilative Field-Aligned Wind Bias Correction Scheme 89
6.3 Comparison of Simulation and Observation at 2012 March Equinox 98
6.4 2012 Southern MSNA/WSA 104
6.5 Relationship Between hmF2 and Vertical Ion Drift at Dip Equator 112
6.6 Discussion and Conclusion 117

Chapter 7. Summary 120

References 124
參考文獻 Aarons, J. (1991), The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms, Radio Sci., 26(4), 1131–1149, doi:10.1029/91RS00473.
Aarons, J., M. Mendillo, R. Yantosca, and E. Kudeki (1996), GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign, J. Geophys. Res., 101(A12), 26851–26862, doi:10.1029/96JA00981.
Aarons, J., M. Mendillo, and R. Yantosca (1997), GPS phase fluctuations in the equatorial region during sunspot minimum, Radio Sci., 32(4), 1535–1550, doi:10.1029/97RS00664.
Aarons, J., and B. Lin (1999), Development of high latitude phase fluctuations during the January 10, April 10–11, and May 15, 1997 magnetic storms, J. Atmos. Sol. Terr. Phys., 61(3–4), 309–327, doi:10.1016/S1364-6826(98)00131-X.
Aarons, J., B. Lin, M. Mendillo, K. Liou, and M. Codrescu (2000), Global Positioning System phase fluctuations and ultraviolet images from the Polar satellite, J. Geophys. Res., 105(A3), 5201–5213, doi:10.1029/1999JA900409.
Abalde, J. R., Y. Sahai, P. R. Fagundes, F. Becker-Guedes, J. A. Bittencourt, V. G. Pillat, W. L. C. Lima, C. M. N. Candido, and T. F. de Freitas (2009), Day-to-day variability in the development of plasma bubbles associated with geomagnetic disturbances, J. Geophys. Res., 114, A04304, doi:10.1029/2008JA013788.
Abdu, M. A. (1997), Major phenomena of the equatorial ionosphere thermosphere system under disturbed conditions, J. Atmos. Sol. Terr. Phys., 59(13), 1505–1519, doi:10.1016/S1364-6826(96)00152-6.
Abdu, M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. Sobral, A. F. Medeiros, and N. B. Trivedi (2003), Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108(A12), 1449, doi:10.1029/2002JA009721.
Abdu, M. A., K. N. Iyer, R. T. de Medeiros, I. S. Batista, and J. H. A. Sobral (2006), Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field, Geophys. Res. Lett., 33, L07106, doi:10.1029/2005GL024835.
Abdu, M. A., E. R. de Paula, I. S. Batista, B. W. Reinisch, M. T. Matsuoka, P. O. Camargo, O. Veliz, C. M. Denardini, J. H. A. Sobral, E. A. Kherani, and P. M. de Siqueira (2008), Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm, J. Geophys. Res., 113, A07313, doi:10.1029/2007JA012844.
Abdu, M. A., E. A. Kherani, I. S. Batista, and J. H. A. Sobral (2009), Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields, Geophys. Res. Lett., 36, L19103, doi:10.1029/2009GL039919.
Abdu, M. A. (2012), Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields, J. Atmos. Sol. Terr. Phys., 44–56, doi:10.1016/j.jastp.2011.04.024.
Anderson, D. N., M. J. Buonsanto, M. Codrescu, D. Decker, C. G. Fesen, T. J. Fuller-Rowell, B. W. Reinisch, P. G. Richards, R. G. Roble, R. W. Schunk, and J. J. Sojka (1998), Intercomparison of physical models and observations of the ionosphere, J. Geophys. Res., 103(A2), 2179–2192, doi:10.1029/97JA02872.
Artru, J., T. Farges, and P. Lognonne (2004), Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modeling., Geophys. J. Int. 158, 1067?1077, doi:10.1111/ j.1365-246X.2004.02377.x.
Basu, S., S. Basu, C. E. Valladares, H.-C. Yeh, S.-Y. Su, E. MacKenzie, P. J. Sultan, J. Aarons, F. J. Rich, P. Doherty, K. M. Groves, and T. W. Bullett (2001), Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes, J. Geophys. Res., 106(A12), 30389–30413, doi:10.1029/2001JA001116.
Basu, S., Su. Basu, K. M. Groves, E. MacKenzie, M. J. Keskinen, and F. J. Rich (2005), Near-simultaneous plasma structuring in the midlatitude and equatorial ionosphere during magnetic superstorms, Geophys. Res. Lett., 32, L12S05, doi:10.1029/2004GL021678.
Basu, Su., S. Basu, J. J. Makela, R. E. Sheehan, E. MacKenzie, P. Doherty, J. W. Wright, M. J. Keskinen, D. Pallamraju, L. J. Paxton, and F. T. Berkey (2005), Two components of ionospheric plasma structuring at mid-latitudes observed during the large magnetic storm of October 30, 2003, Geophys. Res. Lett., 32, L12S06, doi:10.1029/2004GL021669.
Becker-Guedes, F., Y. Sahai, P. R. Fagundes, W. L. C. Lima, V. G. Pillat, J. R. Abalde, and J. A. Bittencourt (2004), Geomagnetic storm and equatorial spread-F, Ann. Geophys., 22, 3231–3239, doi:10.5194/angeo-22-3231-2004.
Becker-Guedes, F., Y. Sahai, P. R. Fagundes, E. S. Espinoza, V. G. Pillat, W. L. C. Lima, Su. Basu, Sa. Basu, Y. Otsuka, K. Shiokawa, E. M. MacKenzie, X. Pi, and J. A. Bittencourt (2007), The ionospheric response in the Brazilian sector during the super geomagnetic storm on 20 November 2003, Ann. Geophys., 25, 863–873, doi:10.5194/ angeo-25-863-2007.
Beer, T., and A. N. May (1972), Atmospheric gravity waves to be expected from the solar eclipse of June 30, Nature, 240, 30?32, doi:10.1038/240030a0.
Beer, T., G. L. Goodwin, and G. L. Hobson (1976), Atmospheric gravity wave production for the solar eclipse of October 23, 1976, Nature, 264, 420?421, doi:10.1038/264420a0.
Bellchambers, W., and W. Piggott (1958), Ionospheric measurements made at Halley Bay, Nature, 182, 1596–1597, doi:10.1038/1821596a0.
Beniguel, Y., R. Romano, L. Alfonsi, M. Aquino, A. Bourdillon, P. Cannon, G. D. Franceschi, S. Dubey, B. Forte, V. Gherm, N. Jakowski, M. Materassi, T. Noack, M. Pozoga, N. Rogers, P. Spalla, H. J. Strangeways, E. M. Warrington, A. Wernik, V. Wilken, and N. Zernov (2009), Ionospheric scintillation monitoring and modeling, Ann. Geophys., 52, 391–416, doi:10.4401/ag-4595.
Blanc, M., and A. D. Richmond (1980), The ionospheric disturbance dynamo, J. Geophys. Res., 85(A4),1669–1686, doi:10.1029/JA085iA04p01669.
Brasseur, G. P., and S. Solomon (2005), Aeronomy of the Middle Atmosphere, Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Springer, New York.
Burns, A. G., T. L. Killeen, W. Deng, G. R. Carignan, and R. G. Roble (1995), Geomagnetic storm effects in the low- to middle-latitude upper thermosphere, J. Geophys. Res., 100(A8), 14673–14691, doi:10.1029/94JA03232.
Burns, A. G., Z. Zeng, W. Wang, J. Lei, S. C. Solomon, A. D. Richmond, T. L. Killeen, and Y.-H. Kuo (2008), Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res., 113, A12305, doi:10.1029/2008JA013308.
Carter, B. A., K. Zhang, R. Norman, V. V. Kumar, and S. Kumar (2013), On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements, J. Geophys. Res., 118, 892–904, doi:10.1002/jgra.50089.
Chang, F. Y., J. Y. Liu, C. H. Lin, C. H. Chen, L. C. Chang (2014), Eastward phase shift of the electron density at the middle and high latitude ionosphere, submitted to Geophys. Res. Lett.
Chen, W. S., C. C. Lee, J. Y. Liu, F. D. Chu, and B. W. Reinisch (2006), Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum, J. Geophys. Res., 111, A12305, doi:10.1029/2006JA011688.
Chen, C. H., J. D. Huba, A. Saito, C. H. Lin, and J. Y. Liu (2011), Theoretical study of the ionospheric Weddell Sea Anomaly using SAMI2, J. Geophys. Res., 116, A04305, doi:10.1029/2010JA015573.
Chen, C. H., C. H. Lin, L. C. Chang, J. D. Huba, J. T. Lin, A. Saito, and J. Y. Liu (2013), Thermospheric tidal effects on the ionospheric midlatitude summer nighttime anomaly using SAMI3 and TIEGCM, J. Geophys. Res. Space Phys., 118, 3836–3845, doi:10.1002/ jgra.50340.
Cheng, K., Y.?N. Huang, and S.?W. Chen (1992), Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region, J. Geophys. Res., 97(A1), 103?111, doi:10.1029/91JA02409.
Chimonas, G., and C. O. Hines (1970), Atmospheric gravity waves induced by a solar eclipse, J. Geophys. Res., 75(4), 875, doi:10.1029/JA075i004p00875.
Chimonas, G. (1970), Internal gravity?wave motions induced in the Earth’s atmosphere by a solar eclipse, J. Geophys. Res., 75(28), 5545?5551, doi:10.1029/JA075i028p05545.
Chu, F. D., J. Y. Liu, H. Takahashi, J. H. A. Sobral, M. J. Taylor, and A. F. Medeiros (2005), The climatology of ionospheric plasma bubbles and irregularities over Brazil, Ann. Geophys., 23, 379–384, doi:10.5194/angeo-23-379-2005.
Clausen, L. B. N., J. M. Ruohoniemi, R. A. Greenwald, E. G. Thomas, S. G. Shepherd, E. R. Talaat, W. A. Bristow, Y. Zheng, A. J. Coster, and S. Sazykin (2012), Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations, J. Geophys. Res., 117, A05306, doi:10.1029/2011JA017232.
Comstock, J. P. (1967), Principles of Naval Architecture, Society of Naval Architects and Marine Engineers., New York.
Coster, A. and S. Skone (2009), Monitoring storm-enhanced density using IGS reference station data, J. Geodesy, 83 (3?4), 345?351.
Daley, R. (1991), Atmospheric Data Analysis, 457 pp., Cambridge Univ. Press, New York.
Datta-Barua, S., G. S. Bust, G. Crowley, and N. Curtis (2009), Neutral wind estimation from 4-D ionospheric electron density images, J. Geophys. Res., 114, A06317, doi:10.1029/ 2008JA014004.
Davies, K. (1990), Ionospheric Radio, Peregrinus, London.
Davis, M. J. and A. V. da Rosa (1970), Possible detection of atmospheric gravity waves generated by the solar eclipse, Nature, 226, 1123, doi:10.1038/2261123a0.
Dickinson, R. E., E. C. Ridley, and R. G. Roble (1981), A three-dimensional general circulation model of the thermosphere, J. Geophys. Res., 86(A3), 1499–1512, doi:10.1029/ JA086iA03p01499.
Doherty, P., A. J. Coster, and W. Murtagh (2004), Space weather effects of October–November 2003, GPS Solutions, 8, 267?271, doi:10.1007/s10291-004-0109-3.
Dyson, P. L., T. P. Davies, M. L. Parkinson, A. J. Reeves, P. G. Richards, and C. E. Fairchild (1997), Thermospheric neutral winds at southern mid-latitudes: A comparison of optical and ionosonde hmF2 methods, J. Geophys. Res., 102(A12), 27189–27196, doi:10.1029/ 97JA02138.
Emmert, J. T., J. L. Lean, and J. M. Picone (2010), Record-low thermospheric density during the 2008 solar minimum, Geophys. Res. Lett., 37, L12102, doi:10.1029/2010GL043671.
Espenak, F., and J. Anderson (2008), Total solar eclipse of 2009 July 22, NASA Tech. Pap.
Farges, T., A., Le Pichon, E. Blanc, S. Perez, and B. Alcoverro (2003), Response of the lower atmosphere and the ionosphere to the eclipse of August 11, 1999. J. Atmos. Sol. Terr. Phys., 65, 717–726, doi:10.1016/S1364-6826(03)00078-6.
Fejer, B. G., R. W. Spiro, R. A. Wold, and J. C. Foster (1990), Latitudinal variations of penetration electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results, Ann. Geophys., 8, 441–454.
Fejer, B. G., and L. Scherliess (1995), Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 22(7), 851–854, doi:10.1029/95GL00390.
Fejer, B. G., J. W. Jensen, and S.-Y. Su (2008), Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts, Geophys. Res. Lett., 35, L20106, doi:10.1029/2008GL035584.
Forster, M., J. C. Foster, J. Smilauer, K. Kudela, and A. V. Mikhailov (1999), Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm, Ann. Geophys., 17, 389–404, doi:10.1007/s00585-999-0389-6.
Foster, J. C. (1993), Storm time plasma transport at middle and high latitudes, J. Geophys. Res., 98(A2), 1675–1689, doi:10.1029/92JA02032.
Foster, J. C., and W. J. Burke (2002), SAPS: A new characterization for sub-auroral electric fields, Eos Trans. AGU, 83, 393–394.
Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich (2002), Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067.
Fuller-Rowell, T. J., G. H. Millward, A. D. Richmond, and M. V. Codrescu (2002), Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64, 1383–1391, doi:10.1016/S1364-6826(02)00101-3.
Fuller-Rowell, T. J., E. A. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A. R. Jacobson (2006), US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci., 41, RS6003, doi:10.1029/2005RS003393.
Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735–746, doi:10.1016/S0021-9169(68)80029-7.
Gherm, V. E., N. N. Zernov, and H. J. Strangeways (2005), Propagation model for transionospheric fluctuating paths of propagation: Simulator of the transionospheric channel, Radio Sci., 40, RS1003, doi:10.1029/2004RS003097.
Hajkowicz, L. A. (1977), Periodic fadings in VHF radio-satellite transmissions during the solar eclipse on 23 October 1976, Nature, 226, 147?148, doi:10.1038/266147a0.
Hanuise, C., P. Broche, and G. Ogubazghi (1982), HF Doppler observations of gravity waves during the 16 February 1980 solar eclipse, J. Atmos. Terr. Phys., 44, 963–966, doi:10.1016/0021-9169(82)90060-5.
He, M., L. Liu, W. Wan, B. Ning, B. Zhao, J. Wen, X. Yue, and H. Le (2009), A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 114, A12309, doi:10.1029/2009JA014175.
Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Fraser, T. Tsuda, F. Vial, R. A. Vincent (1996), Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58(13), 1421–1447, doi:10.1016/0021-9169(95)00122-0.
Heki, K., and J. Ping (2005), Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array, Earth Planet. Sci. Lett., 236, 845–855, doi:10.1016/j.epsl.2005.06.010.
Horvath, I., and E. A. Essex (2003), The Weddell Sea Anomaly observed with the TOPEX satellite data, J. Atmos. Sol. Terr. Phys., 65(6), 693–706, doi:10.1016/ S1364-6826(03)00083-X.
Horvath, I. (2006), A total electron content space weather study of the nighttime Weddell Sea Anomaly of 1996/1997 southern summer with TOPEX/Poseidon radar altimetry, J. Geophys. Res., 111, A12317, doi:10.1029/2006JA011679.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–995, doi:10.1098/rspa.1998.0193.
Huang, C. M., A. D. Richmond, and M. Q. Chen (2005), Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields, J. Geophys. Res., 110, A05312, doi:10.1029/2004JA010994.
Huang, C. M., and M. Q. Chen (2008), Formation of maximum electric potential at the geomagnetic equator by the disturbance dynamo, J. Geophys. Res., 113, A03301, doi:10.1029/2007JA012843.
Huang, N. E., and Z. Wu (2008), A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46, RG2006. doi:10.1029/2007RG000228.
Hunter, A. N., B. K. Holman, D. G. Fieldgate, and R. Kelleher (1974), Faraday rotation studies in Africa during the solar eclipse of June 30, 1973, Nature, 250, 205–206, doi:10.1038/250205a0.
Hajj, G. A., and L. J. Romans (1998), Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33(1), 175–190, doi:10.1029/97RS03183.
Jakowski, N., S. M. Stankov, V. Wilken, C. Borries, D. Altadill, J. Chum, D. Bure?ova, J. Boska, P. Sauli, F. Hru?ka, and Lj. R. Cander (2008), Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. J. Atmos. Sol. Terr. Phys., 70, 836–853.
Jee, G., A. G. Burns, Y.-H. Kim, and W. Wang (2009), Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements, J. Geophys. Res., 114, A04307, doi:10.1029/2008JA013801.
Kane, R. P. (2005), Ionospheric foF2 anomalies during some intense geomagnetic storms, Ann. Geophys., 23, 2487–2499, doi:10.5194/angeo-23-2487-2005.
Kelley, M. C., B. G. Fejer, and C. A. Gonzales (1979), An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6(4), 301–304, doi:10.1029/GL006i004p00301.
Kelley, M. C., J. F. Vickrey, C. W. Carlson, and R. Torbert (1982), On the origin and spatial extent of high-latitude F region irregularities, J. Geophys. Res., 87(A6), 4469–4475, doi:10.1029/JA087iA06p04469.
Kelley, M. C. (1989), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 1st ed., Academic Publishers, San Diego, Calif.
Kelley, M. C., D. Kotsikopoulos, T. Beach, D. Hysell, and S. Musman (1996), Simultaneous Global Positioning System and radar observations of equatorial spread F at Kwajalein, J. Geophys. Res., 101(A2), 2333–2341, doi:10.1029/ 95JA02025.
Kelley, M. C. (2009), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed., Academic Publishers, San Diego, Calif.
Kersley, L., C. Russell, and D. Rice (1995), Phase scintillation and irregularities in the northern polar ionosphere, Radio Sci., 30, 619–629, doi:10.1029/94RS03175.
Keskinen, M. J., S. Basu, and S. Basu (2004), Midlatitude sub-auroral ionospheric small scale structure during a magnetic storm, Geophys. Res. Lett., 31, L09811, doi:10.1029/ 2003GL019368.
Kikuchi, T., K. K. Hashimoto, and K. Nozaki (2008), Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res., 113, A06214, doi:10.1029/2007JA012628.
Kliore, A. J., D. L. Cain, G. S. Levy, V. R. Eshleman, G. Fjeldbo, and F. D. Drake (1965), Occultation experiment: Results of the first direct measurement of Mars’ atmosphere and ionosphere, Science, 149, 1243–1248.
Komjathy, A., D. A. Galvan, P. Stephens, M. D. Butala, V. Akopian, B. Wilson, O. Verkhoglyadova, A. J. Mannucci, and M. Hickey (2012), Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study, Earth Planets Space, 64(12), 1287–1294, doi:10.5047/ eps.2012.08.003.
Krankowski, A., I. Zakharenkova, A. Krypiak-Gregorczyk, I. I. Shagimuratov, and P. Wielgosz (2011), Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data, J. Geodesy, 85(12), 949–964, doi:10.1007/s00190-011-0481-z.
Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy (1997), Observing Earth′s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102(D19), 23429–23465, doi:10.1029/97JD01569.
Ledvina, B. M., J. J. Makela, and P. M. Kintner (2002), First observations of intense GPS L1 amplitude scintillations at mid-latitude, Geophys. Res. Lett., 29(14), 1659, doi:10.1029/ 2002GL014770.
Ledvina, B. M., P. M. Kintner, and J. J. Makela (2004), Temporal properties of intense GPS L1 amplitude scintillations at mid-latitudes, Radio Sci., 39, RS1S18, doi:10.1029/ 2002RS002832.
Lei, J., S. Syndergaard, A. G. Burns, S. C. Solomon, W. Wang, Z. Zeng, R. G. Roble, Q. Wu, Y.-H. Kuo, J. M. Holt, S.-R. Zhang, D. L. Hysell, F. S. Rodrigues, and C. H. Lin (2007), Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07308, doi:10.1029/ 2006JA012240.
Li, G., B. Ning, L. Hu, L. Liu, X. Yue, W. Wan, B. Zhao, K. Igarashi, M. Kubota, Y. Otsuka, J. S. Xu, and J. Y. Liu (2010), Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004, J. Geophys. Res., 115, A04304, doi:10.1029/2009JA014830.
Lin, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai, and S.-Y. Su (2005), Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: Observational results, J. Geophys. Res., 110, A09S28, doi:10.1029/2004JA010900.
Lin, C. H., J. Y. Liu, C. Z. Cheng, C. H. Chen, C. H. Liu, W. Wang, A. G. Burns, and J. Lei (2009), Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly, J. Geophys. Res., 114, A02312, doi:10.1029/2008JA013455.
Lin, C. Y., T. Matsuo, J. Y. Liu, C. H. Lin, H. F. Tsai, and E. A. Araujo-Pradere (2014), Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance, Atmos. Meas. Tech. Discuss., 7, 2631–2661.
Liu, J. Y., H. F. Tsai, and T. K. Jung (1996), Total electron content obtained by using the Global Positioning System, Terr. Atmos. Oceanic Sci., 7, 107–117.
Liu, J. Y., H. F. Tsai, C. C. Wu, C. L. Tseng, L. C. Tsai, W. H. Tsai, K. Liou, and J. K. Chao (1999), The effect of geomagnetic storm on ionospheric total electron content at equatorial anomaly region, Adv. Space Res., 24, 1491–1494, doi:10.1016/ S0273-1177(99)00712-7.
Liu, J. Y., C. Y. Lin, C. H. Lin, H. F. Tsai, S. C. Solomon, Y. Y. Sun, I. T. Lee, W. S. Schreiner, and Y. H. Kuo (2010), Artificial plasma cave in the low?latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC, J. Geophys. Res., 115, A07319, doi:10.1029/2009JA015079.
Liu, J. Y., Y. Y. Sun, Y. Kakinami, C. H. Chen, C. H. Lin, and H. F. Tsai, Bow and stern waves triggered by the Moon’s shadow boat (2011), Geophys. Res. Lett., 38, L17109, doi:10.1029/2011GL048805.
Liu, H., S. V. Thampi, and M. Yamamoto (2010), Phase reversal of the diurnal cycle in the midlatitude ionosphere, J. Geophys. Res., 115, A01305, doi:10.1029/2009JA014689.
Liu, L., H. Le, Y. Chen, M. He, W. Wan, and X. Yue (2011), Features of the middle? and low?latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements, J. Geophys. Res., 116, A09307, doi:10.1029/ 2011JA016691.
Luan, X., and S. C. Solomon (2008), Meridional winds derived from COSMIC radio occultation measurements, J. Geophys. Res., 113, A08302, doi:10.1029/ 2008JA013089.
Martin, E., and J. Aarons (1977), F Layer Scintillations and the Aurora, J. Geophys. Res., 82(19), 2717–2722, doi:10.1029/JA082i019p02717.
Martinis, C. R., M. J. Mendillo, and J. Aarons (2005), Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms, J. Geophys. Res., 110, A07306, doi:10.1029/2003JA010362.
Maruyama, N., A. D. Richmond, T. J. Fuller-Rowell, M. V. Codrescu, S. Sazykin, F. R. Toffoletto, R. W. Spiro, and G. H. Millward (2005), Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere, Geophys. Res. Lett., 32, L17105, doi:10.1029/2005GL023763.
Maruyama, N., T. J. Fuller-Rowell, M. V. Codrescu, D. Anderson, A. D. Richmond, A. Maute, S. Sazykin, F. R. Toffoletto, R. W. Spiro, R. A. Wolf, and G. H. Millward (2011), Modeling the storm time electrodynamics, in Aeronomy of the Earth′s Atmosphere and Ionosphere, Vol. 2, edited by M. A. Abdu, pp. 455?464, Springer, doi:10.1007/ 978-94-007-0326-1_35.
Maruyama, N., P. G. Richards, T.-W. Fang, C. Negrea, L. Mayer, T. J. Fuller-Rowell, A. Richmond, and A. Maute, (2012), Evaluating the dynamic and energetic variation of the ionosphere and plasmasphere associated with the geomagnetic field variations, 13th International Symposium on Equatorial Aeronomy (ISEA-13), Paracus, Peru.
Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89(A12), 10903–10912, doi:10.1029/JA089iA12p10903.
Maruyama, T. (1988), A diagnostic model for equatorial spread F, 1, Model description and application to electric field and neutral wind effects, J. Geophys. Res., 93(A12), 14611–14622, doi:10.1029/JA093iA12p14611.
Maruyama, T., S. Saito, M. Kawamura, K. Nozaki, J. Krall, and J. D. Huba (2009), Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: Evidence for meridional wind control, Ann. Geophys., 27, 2027–2034, doi:10.5194/angeo-27-2027-2009.
Matsuo, T., D. W. Nychka, and D. Paul (2011), Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach, Computational Statistics and Data Analysis, 55(6), 2059-2073, doi:10.1016/j.csda.2010.12.002.
Mendillo, M., J. Baumgardner, X. Pi, P. J. Sultan, and R. Tsunoda (1992), Onset condition for equatorial spread F, J. Geophys. Res., 97(A9), 13865?13876, doi:10.1029/92JA00647.
Mendillo, M., B. Lin, and J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35, 885–904, doi:10.1029/1999RS002208.
Mendillo, M., J. Meriwether, and M. Biondi (2001), Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread F, J. Geophys. Res., 106, 3655–3663, doi:10.1029/2000JA000148.
Miller, K. L., D. G. Torr, and P. G. Richards (1986), Meridional winds in the thermosphere derived from measurement of F2 layer height, J. Geophys. Res., 91(A4), 4531–4535, doi:10.1029/ JA091iA04p04531.
Miller, K. L., P. Richards, and D. G. Torr (1989), The derivation of meridional neutral winds in the thermosphere from F2-layer height, in World Ionosphere/Thermosphere Study, WITS Handbook, 2C, edited by C. H. Liu, Chapt. 16, 439–471, SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.
Millholland, S., N. Maruyama, A. Maute, L. Goncharenko, A. Burns, P. Richards, T.-W. Fang, and T. Fuller-Rowell (2013), Modeling sudden stratospheric warming events using the Ionosphere-Plasmasphere-Electrodynamics (IPE) Model, AGU Fall Meeting, San Francisco, December 8?13, 2013.
Morton, F. W., and E. A. Essex (1978), Total electron content observations during the 23 October 1976 solar eclipse over south eastern Australia, J. Atmos. Terr. Phys., 40, 111–114, doi:10.1016/0021-9169(78)90115-0.
Musman, S., J.-M. Jahn, J. LaBelle, and W. E. Swartz (1997), Imaging spread-F structures using GPS observations at Alcantara, Brazil, Geophys. Res. Lett., 24(13), 1703–1706, doi:10.1029/97GL00834.
Nishioka, M., A. Saito, and T. Tsugawa (2008), Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks, J. Geophys. Res., 113, A05301, doi:10.1029/2007JA012605.
Nychka, D., C. K. Wikle, and J. A. Royle (2002), Multiresolution models for nonstationary spatial covariance functions, Stat. Modell., 2, 315?331, doi:10.1191/1471082x02st037oa.
Oksavik, K., R. A. Greenwald, J. M. Ruohoniemi, M. R. Hairston, L. J. Paxton, J. B. H. Baker, J. W. Gjerloev, and R. J. Barnes (2006), First observations of the temporal/spatial variation of the sub-auroral polarization stream from the SuperDARN Wallops HF radar, Geophys. Res. Lett., 33, L12104, doi:10.1029/2006GL026256.
Otsuka, Y., N. Kotake, T. Tsugawa, K. Shiokawa, T. Ogawa, Effendy, S. Saito, M. Kawamura, T. Maruyama, N. Hemmakorn, and T. Komolmis (2006), GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake, Earth Planets Space, 58, 159–165.
Oyekola, O. S., A. Ojo, and J. Akinrimisi (2008), A comparison of ground and satellite observations of F region vertical velocity near the dip equator, Radio Sci., 43, RS1005, doi:10.1029/2007RS003699.
Pancheva, D., and P. Mukhtarov (2010), Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region, Geophys. Res. Lett., 37, L14105, doi:10.1029/ 2010GL044039.
Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of global ionospheric irregularities using the Worldwide GPS Network, Geophys. Res. Lett., 24(18), 2283–2286, doi:10.1029/97GL02273.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
Pimenta, A. A., D. C. M. Amorim, and C. M. N. Candido (2008), Thermospheric dark band structures at low latitudes in the Southern Hemisphere under different solar activity conditions: A study using OI 630 nm emission all-sky images, Geophys. Res. Lett., 35, L16103, doi:10.1029/2008GL034904.
Reddy, C. A., and A. Nishida (1992), Magnetospheric substorms and nighttime height changes of the F2 region at middle and low latitudes, J. Geophys. Res., 97(A3), 3039–3061, doi:10.1029/91JA01512.
Ren, Z., W. Wan, L. Liu, H. Le, and M. He (2012), Simulated midlatitude summer nighttime anomaly in realistic geomagnetic fields, J. Geophys. Res., 117, A03323, doi:10.1029/ 2011JA017010.
Richards, P. G. (1991), An improved algorithm for determining neutral winds from the height of the F2 peak electron density, J. Geophys. Res., 96(A10), 17839–17846, doi:10.1029/ 91JA01467.
Richards, P. G. (2001), Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models, J. Geophys. Res., 106(A7), 12803–12819, doi:10.1029/2000JA000365.
Richards, P. G. (2002), Ion and neutral density variations during ionospheric storms in September 1974: Comparison of measurement and models, J. Geophys. Res., 107(A11), 1361, doi:10.1029/2002JA009278.
Richards, P. G., and D. G. Torr (1996), The field line interhemispheric plasma model, in STEP: Handbook of Ionospheric Models, edited by R. W. Schunk, 207–216, Utah State Univ., Logan, Utah.
Richards, P. G., D. G. Torr, M. J. Buonsanto, and D. P. Sipler (1994a), Ionospheric effects of the March 1990 Magnetic Storm: Comparison of theory and measurement, J. Geophys. Res., 99(A12), 23359–23365, doi:10.1029/94JA02343.
Richards, P. G., D. G. Torr, B. W. Reinisch, R. R. Gamache, and P. J. Wilkinson (1994b), F2 peak electron density at Millstone Hill and Hobart: Comparison of theory and measurement at solar maximum, J. Geophys. Res., 99(A8), 15005–15016, doi:10.1029/94JA00863.
Richards, P. G., P. L. Dyson, T. P. Davies, M. L. Parkinson, and A. J. Reeves (1998), Behavior of the ionosphere and thermosphere at a southern midlatitude station during magnetic storms in early March 1995, J. Geophys. Res., 103(A11), 26421–26432, doi:10.1029/97JA03342.
Richards, P. G., M. J. Nicolls, C. J. Heinselman, J. J. Sojka, J. M. Holt, and R. R. Meier (2009), Measured and modeled ionospheric densities, temperatures, and winds during the international polar year, J. Geophys. Res., 114, A12317, doi:10.1029/2009JA014625.
Richards, P. G., R. R. Meier, and P. J. Wilkinson (2010), On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data, J. Geophys. Res., 115, A10309, doi:10.1029/ 2010JA015368.
Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr., 47, 191–212, doi:10.5636/jgg.47.191.
Richmond, A. D., C. Peymirat, and R. G. Roble (2003), Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108(A3), 1118, doi:10.1029/2002JA009758.
Richmond, A. D., and A. Maute (2013), Ionospheric electrodynamics modeling, Modeling the Ionosphere/Thermosphere System, in Modeling the Ionosphere-Thermosphere, Geophys. Monogr. Ser., vol. 201, edited by J. D. Huba, , 360 pp., AGU, Washington, D.C., doi:10.1002/9781118704417.ch6.
Rishbeth, H. (1967), The effect of winds on the ionospheric F2-peak, J. Atmos. Sol. Terr. Phys., 29(3), 225–238, doi:10.1016/0021-9169(67)90192-4.
Rishbeth, H., and O. K. Garriott (1969), Introduction to Ionospheric Physics, Academic Press Inc., New York.
Rishbeth, H., S. Gangly, and J. C. G. Walker (1978), Field-aligned and field-perpendicular velocities in the ionospheric F2-layer, J. Atmos. Sol. Terr. Phys., 40(7), 767–784, doi:10.1016/0021-9169(78)90028-4.
Sahai, Y., F. Becker-Guedes, P. R. Fagundes, A. J. de Abreu, R. de Jesus, V. G. Pillat, J. R. Abalde, C. R. Martinis, C. Brunini, M. Gende, C.-S. Huang, X. Pi, W. L. C. Lima, J. A. Bittencourt, and Y. Otsuka (2009a), Observations of the F region ionospheric irregularities in the South American sector during the October 2003 ‘Halloween Storms,’ Ann. Geophys., 27(12), 4463–4477, doi:10.5194/angeo-27-4463-2009.
Sahai, Y., F. Becker-Guedes, P. R. Fagundes, R. de Jesus, A. J. de Abreu, L. J. Paxton, L. P. Goncharenko, C. Brunini, M. Gende, A. S. Ferreira, N. S. Lima, F. L. Guarnieri, V. G. Pillat, J. A. Bittencourt, and C. M. N. Candido (2009b), Effects observed in the Latin American sector ionospheric F region during the intense geomagnetic disturbances in the early part of November 2004, J. Geophys. Res., 114, A00A19, doi:10.1029/2007JA013007.
Sardon, E., A. Rius, and N. Zarraoa (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29(3), 577–586, doi:10.1029/94RS00449.
Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104(A4), 6829–6842, doi:10.1029/1999JA900025.
Scherliess, L., R. W. Schunk, and D. C. Thompson (2011), Data assimilation models: A ‘new’ tool for ionosphere science and applications, in The Dynamic Magnetosphere, edited by W. Liu and M. Fuimoto, IAGA Special Sopron Book Ser. 3, pp. 329–339, Springer, New York, doi:10.1007/978-94-007-0501-2_18.
Schodel, J. P., J. Klostermeyer, and J. Rottger (1973), Atmospheric gravity wave observations after the solar eclipse of June 30, Nature, 245, 87–88, doi:10.1038/245087a0.
Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt (2007), Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808, doi:10.1029/2006GL027557.
Shan, S. J., J. Y. Liu, F. S. Kou, C. C. Liu, and Tsai H. F. (2002), GPS phase fluctuation observed along the American sector during low irregularity activity months of 1997–2000. Earth, Planets and Space, 54(2), 141–152.
Skone, S., R. Yousuf, and A. Coster (2004), Performance evaluation of the wide area augmentation system for ionospheric storm events, J. Global Positioning Systems, 3(1–2), 251–258.
Solomon, S. C., L. Qian, L. V. Didkovsky, R. A. Viereck, and T. N. Woods (2011), Causes of low thermospheric density during the 2007–2009 solar minimum, J. Geophys. Res., 116, A00H07, doi:10.1029/2011JA016508.
Spencer, P. S. J., D. S. Robertson, and G. L. Mader (2004), Ionospheric data assimilation methods for geodetic applications, paper presented at Position, Location, and Navigation Symposium (PLANS 2004), Inst. of Electr. and Electron. Eng., New York.
Spiro, R. W., R. A. Wolf, and B. G. Fejer (1988), Penetration of high latitude electric fields effects to low latitudes during SUNDIAL 1984, Ann. Geophys., 6, 39–50.
Su, S.-Y., C. H. Liu, H. H. Ho, and C. K. Chao (2006), Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330.
Sun, Y. Y., J. Y. Liu, and C. H. Lin, A statistical study of low-latitude F-region irregularities at Brazilian longitudinal sector response to geomagnetic storms during post-sunset hours in solar cycle 23 (2012), J. Geophys. Res., 117, A03333, doi:10.1029/2011JA017419.
Sun, Y. Y., T. Matsuo, E. A. Eduardo, and J. Y. Liu (2013), Ground-based GPS observation of SED-associated irregularities over CONUS, J. Geophys. Res., 118, 2474–2489, doi:10.1029/2012JA018103.
Sun, Y. Y., T. Matsuo, N. Maruyama, and J. Y. Liu (2014), Assimilative neutral wind bias correction scheme for global ionospheric modeling in midlatitude, J. Geophys. Res., under review.
Torr, M. R., D. G. Torr, P. G. Richards, and S. P. Yung (1990), Mid- and low-latitude model of thermospheric emissions: 1. O+ (2P) 7320 A and N2 (2P) 3371 A, J. Geophys. Res., 95(A12), 21147–21168, doi:10.1029/JA095iA12p21147.
Tsai, H. F., and J. Y. Liu (1999), Ionospheric total electron content response to solar eclipses, J. Geophys. Res., 104(A6), 12657–12668, doi:10.1029/1999JA900001.
Vo, H. B., and J. C. Foster (2001), A quantitative study of ionospheric density gradients at midlatitudes, J. Geophys. Res., 106(A10), 21,555–21,563, doi:10.1029/2000JA000397.
Wang, K.-Y., and C.-H. Liu (2010), Profiles of temperature responses to the 22 July 2009 total solar eclipse from FORMOSAT-3/COSMIC constellation, Geophys. Res. Lett., 37, L01804, doi:10.1029/2009GL040968.
Waniewski, T. A., C. E. Brennen, and F. Raichlen (2002), Bow wave dynamics, J. Ship Res., 46, 1–15.
Weimer, D. R. (1996), A flexible, IMF dependent model of high-latitude electric potentials having ‘‘space weather’’ applications, Geophys. Res. Lett., 23, 2549–2552, doi:10.1029/ 96GL02255.
Welch, G., and G. Bishop (1995), An introduction to the Kalman filter, Technical Report 95-041, Dept. of Computer Science, Univ. of North Carolina at Chapel Hill.
Yeh, H. C., S. Y. Su, and R. A. Heelis (2001), Storm time plasma irregularities in the pre-dawn hours observed by the low-latitude ROCSAT-1 satellite at 600 km altitude, Geophys. Res. Lett., 28(4), 685?688, doi:10.1029/2000GL012183.
Yue, X., W. Wan, J. Lei, and L. Liu (2008), Modeling the relationship between E × B vertical drift and the time rate of change of hmF2 (△hmF2 /△t) over the magnetic equator, Geophys. Res. Lett., 35, L05104, doi:10.1029/2007GL033051.
Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, and Y.-H. Kuo (2010), Error analysis of Abel retrieved electron density profiles from radio-occultation measurements, Ann. Geophys., 28, 217–222, doi:10.5194/angeo-28-217-2010.
Zhang, W., D. H. Zhang, and Z. Xiao (2009), The influence of geomagnetic storms on the estimation of GPS instrumental biases, Ann. Geophys., 27, 1613–1623, doi:10.5194/ angeo-27-1613-2009.
Zhang, D. H., W. Zhang, Q. Li, L. Q. Shi, Y. Q. Hao, and Z. Xiao (2010), Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes, Ann. Geophys., 28, 1571–1580, doi:10.5194/angeo-28-1571-2010.
指導教授 劉正彥、松尾朋子(Jann-Yenq Liu Tomoko Matsuo) 審核日期 2014-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明